001     837945
005     20240712112840.0
024 7 _ |a 10.1021/acscatal.7b02036
|2 doi
024 7 _ |a WOS:000412795700071
|2 WOS
037 _ _ |a FZJ-2017-06706
082 _ _ |a 540
100 1 _ |a Gunkel, Felix
|0 P:(DE-Juel1)130677
|b 0
|e Corresponding author
245 _ _ |a Ordering and Phase Control in Epitaxial Double-Perovskite Catalysts for the Oxygen Evolution Reaction
260 _ _ |a Washington, DC
|c 2017
|b ACS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1506323548_17749
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The complex oxide compound praseodymium barium cobalt oxide (PBCO) is an efficient catalyst for the oxygen evolution reaction (OER) during electrochemical water splitting, with an activity that is mainly ascribed to PBCO’s inherent atomic structure and band alignment. Here, we report on epitaxial PBCO thin films showing electrocatalytic properties, with current densities of up to 10 mA/cm2 at 1.8 V vs RHE. Dense PBCO thin films are synthesized in a disordered perovskite phase as well as in a coherently oxygen vacancy ordered (double) perovskite phase, in which oxygen vacancies are incorporated in every second CoO2−δ atomic plane along the out-of-plane direction. The transition from disordered to ordered growth occurs with temperature control during the growth process and can be directly monitored in situ by means of reflection high-energy electron diffraction. The epitaxial fabrication process allows the control of the structure and phase of the oxide catalysts, providing model systems for exploring structure–property relations and atomistic processes of catalysis during the OER. For all structural compositions, we demonstrate remarkably similar catalytic properties, indicating a negligible effect of the structural bulk phase on OER catalysis. Rational design routes for perovskite catalysts derived merely from bulk properties should therefore be met with suspicion.
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Jin, Lei
|0 P:(DE-Juel1)145711
|b 1
700 1 _ |a Müller, David
|0 P:(DE-Juel1)166093
|b 2
700 1 _ |a Hausner, Clemens
|0 P:(DE-Juel1)171485
|b 3
700 1 _ |a Bick, Daniel S.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Jia, Chun-Lin
|0 P:(DE-Juel1)130736
|b 5
700 1 _ |a Schneller, Theodor
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Valov, Ilia
|0 P:(DE-Juel1)131014
|b 7
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 8
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 9
773 _ _ |a 10.1021/acscatal.7b02036
|g p. 7029 - 7037
|0 PERI:(DE-600)2584887-2
|p 7029 - 7037
|t ACS catalysis
|v 7
|y 2017
|x 2155-5435
856 4 _ |u https://juser.fz-juelich.de/record/837945/files/acscatal.7b02036.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837945/files/acscatal.7b02036.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837945/files/acscatal.7b02036.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837945/files/acscatal.7b02036.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837945/files/acscatal.7b02036.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837945/files/acscatal.7b02036.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:837945
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130677
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145711
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166093
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171485
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130736
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131014
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130620
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS CATAL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS CATAL : 2015
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 2
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 3
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21