001     837946
005     20210129231449.0
024 7 _ |a 2128/15672
|2 Handle
037 _ _ |a FZJ-2017-06707
041 _ _ |a English
100 1 _ |a Kriehuber, Ralf
|0 P:(DE-Juel1)133469
|b 0
|e Corresponding author
111 2 _ |a Joint Meeting of the European Radiation Research Society and the Society for Biological Radiation Research
|g ERRS and GBS
|c Essen
|d 2017-09-17 - 2017-09-21
|w Germany
245 _ _ |a Geno- and Cytotoxicity of DNA-associated Auger Electron emitters
260 _ _ |c 2017
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1508758159_30575
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Theoretical considerations, Monte-Carlo simulations and experimental findings suggest that DNA-incorporated Auger electron emitters (AEE) cause primarily complex and clustered DNA lesions. It was previously shown that the shape of AEE-induced cell survival curves resembles that of High-LET irradiation and, therefore, poses the question of an increased biological effectiveness and a separate quality factor for Auger electrons. During electron capture or internal conversion an electron vacancy in an inner atomic shell is created. Filling the electron vacancy by a higher shell electron can initiate a process of non-radiative energy transmission, commonly termed as “Auger effect”. During the process numerous low-energy Auger electrons (up to 27 in the case of Iodine-125) with a short range are emitted leading to energy densities and free radical production in the close vicinity of the emitter exceeding that of a 5 MeV alpha-particle traversing the DNA double-helix. Experimental data demonstrate, that the cyto- and genotoxicity of AEE is comparable to low-LET radiation per unit dose when the AEE is exclusively located in the cytoplasm. However, in case of DNA-incorporation RBEs ranging from 5 – 9 are frequently reported. Employing the alkaline and neutral comet assay, the high DSB/SSB ratio of I-125-iododeoxyuridine derived from Monte-Carlo simulations could be experimentally confirmed. The unique properties of AEE and the possibility to target DNA in a sequence-specific manner using AEE-labeled Triplex-forming oligonucleotides (TFOs) enable to study the repair of complex DNA lesions at defined sites in more detail. A transgenic SCL-II p2RT strain carrying the stably integrated recoverable p2RT vector system harboring a specific triplex target sequence for TFO-p2RT will help to analyze the repair efficiency of complex DNA lesions regarding mutation frequency, mutation type and mutation localization.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
650 2 7 |a Biology
|0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|x 0
700 1 _ |a Dahmen, Volker
|0 P:(DE-Juel1)133468
|b 1
700 1 _ |a Schmitz, Sabine
|0 P:(DE-Juel1)133346
|b 2
700 1 _ |a Unverricht, Marcus
|0 P:(DE-Juel1)133466
|b 3
700 1 _ |a Pomplun, Ekkehard
|0 P:(DE-Juel1)133341
|b 4
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/837946/files/FZJ-2017_06707_oral_pres_RKriehuber.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/837946/files/FZJ-2017_06707_oral_pres_RKriehuber.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/837946/files/FZJ-2017_06707_oral_pres_RKriehuber.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/837946/files/FZJ-2017_06707_oral_pres_RKriehuber.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/837946/files/FZJ-2017_06707_oral_pres_RKriehuber.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/837946/files/FZJ-2017_06707_oral_pres_RKriehuber.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:837946
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)133469
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)133468
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)133346
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)133466
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)S-US-20090406
|k S-US
|l Sicherheit und Strahlenschutz, Umgebungsüberwachung,Strahlenbiologie
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)S-US-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21