000837953 001__ 837953
000837953 005__ 20210129231450.0
000837953 0247_ $$2doi$$a10.1016/j.jhydrol.2017.09.031
000837953 0247_ $$2ISSN$$a0022-1694
000837953 0247_ $$2ISSN$$a1879-2707
000837953 0247_ $$2WOS$$aWOS:000415769600028
000837953 0247_ $$2altmetric$$aaltmetric:26470985
000837953 037__ $$aFZJ-2017-06714
000837953 082__ $$a690
000837953 1001_ $$0P:(DE-Juel1)156219$$aTang, Q.$$b0$$eCorresponding author
000837953 245__ $$aThe influence of riverbed heterogeneity patterns on river-aquifer exchange fluxes under different connection regimes
000837953 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2017
000837953 3367_ $$2DRIVER$$aarticle
000837953 3367_ $$2DataCite$$aOutput Types/Journal article
000837953 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1507103104_26430
000837953 3367_ $$2BibTeX$$aARTICLE
000837953 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837953 3367_ $$00$$2EndNote$$aJournal Article
000837953 520__ $$aRiverbed hydraulic conductivity (K) is a critical parameter for the prediction of exchange fluxes between a river and an aquifer. In this study, the role of heterogeneity patterns was explored using the fully integrated hydrological model HydroGeoSphere simulating complex, variably saturated subsurface flow. A synthetic 3-D river-aquifer reference model was constructed with a heterogeneous riverbed using non-multi-Gaussian patterns in the form of meandering channels. Data assimilation was used to test the ability of different riverbed K patterns to reproduce hydraulic heads, riverbed K and river-aquifer exchange fluxes. Both fully saturated as well as variably saturated conditions underneath the riverbed were tested. The data assimilation experiments with the ensemble Kalman filter (EnKF) were carried out for four types of geostatistical models of riverbed K fields: (i) spatially homogeneous, (ii) heterogeneous with multi-Gaussian distribution, (iii) heterogeneous with non-multi-Gaussian distribution (channelized structures) and (iv) heterogeneous with non-multi-Gaussian distribution (elliptic structures). For all data assimilation experiments, state variables and riverbed K were updated by assimilating hydraulic heads. For saturated conditions, heterogeneous geostatistical models allowed a better characterization of net exchange fluxes than a homogeneous approximation. Among the three heterogeneous models, the performance of non-multi-Gaussian models was superior to the performance of the multi-Gaussian model, but the two tested non-multi-Gaussian models showed only small differences in performance from one another. For the variably saturated conditions both the multi-Gaussian model and the homogeneous model performed clearly worse than the two non-multi-Gaussian models. The two non-multi-Gaussian models did not show much difference in performance. This clearly shows that characterizing heterogeneity of riverbed K is important. Moreover, particularly under variably saturated flow conditions the mean and the variance of riverbed K do not provide enough information for exchange flux characterization and additional histogram information of riverbed K provides crucial information for the reproduction of exchange fluxes.
000837953 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000837953 588__ $$aDataset connected to CrossRef
000837953 7001_ $$0P:(DE-Juel1)140349$$aKurtz, W.$$b1
000837953 7001_ $$0P:(DE-HGF)0$$aSchilling, O. S.$$b2
000837953 7001_ $$0P:(DE-HGF)0$$aBrunner, P.$$b3
000837953 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b4
000837953 7001_ $$0P:(DE-Juel1)138662$$aHendricks-Franssen, Harrie-Jan$$b5
000837953 773__ $$0PERI:(DE-600)1473173-3$$a10.1016/j.jhydrol.2017.09.031$$gp. S0022169417306352$$p383-396$$tJournal of hydrology$$v554$$x0022-1694$$y2017
000837953 8564_ $$uhttps://juser.fz-juelich.de/record/837953/files/Tang_2017_JoH.pdf$$yRestricted
000837953 8564_ $$uhttps://juser.fz-juelich.de/record/837953/files/Tang_2017_JoH.gif?subformat=icon$$xicon$$yRestricted
000837953 8564_ $$uhttps://juser.fz-juelich.de/record/837953/files/Tang_2017_JoH.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000837953 8564_ $$uhttps://juser.fz-juelich.de/record/837953/files/Tang_2017_JoH.jpg?subformat=icon-180$$xicon-180$$yRestricted
000837953 8564_ $$uhttps://juser.fz-juelich.de/record/837953/files/Tang_2017_JoH.jpg?subformat=icon-640$$xicon-640$$yRestricted
000837953 8564_ $$uhttps://juser.fz-juelich.de/record/837953/files/Tang_2017_JoH.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837953 909CO $$ooai:juser.fz-juelich.de:837953$$pVDB:Earth_Environment$$pVDB
000837953 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156219$$aForschungszentrum Jülich$$b0$$kFZJ
000837953 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140349$$aForschungszentrum Jülich$$b1$$kFZJ
000837953 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b4$$kFZJ
000837953 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b5$$kFZJ
000837953 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000837953 9141_ $$y2017
000837953 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000837953 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837953 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HYDROL : 2015
000837953 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837953 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837953 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837953 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837953 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837953 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837953 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837953 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000837953 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000837953 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000837953 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837953 920__ $$lyes
000837953 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000837953 980__ $$ajournal
000837953 980__ $$aVDB
000837953 980__ $$aI:(DE-Juel1)IBG-3-20101118
000837953 980__ $$aUNRESTRICTED