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Charge diffusion in the one-dimensional Hubbard model
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We study the real-time and real-space dynamics of charge in the one-dimensional Hubbard model in the limit
of high temperatures. To this end, we prepare pure initial states with sharply peaked density profiles and calculate
the time evolution of these nonequilibrium states, by using numerical forward-propagation approaches to chains
as long as 20 sites. For a class of typical states, we find excellent agreement with linear-response theory and
unveil the existence of remarkably clean charge diffusion in the regime of strong particle-particle interactions.
We additionally demonstrate that, in the half-filling sector, this diffusive behavior does not depend on certain
details of our initial conditions, i.e., it occurs for five different realizations with random and nonrandom internal
degrees of freedom, single and double occupation of the central site, and displacement of spin-up and spin-down
particles.
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Introduction. Static properties of integrable quantum many-
body systems are well understood [1]. In contrast, dynamical
questions in these systems continue to be a major challenge in
many areas of modern physics and range from fundamental
questions in statistical physics to applied questions for a
specific class of materials. On the one hand, integrable systems
feature a macroscopic number of (quasi)local conservation
laws [2–4] and any overlap with these conserved quantities
leads to the breakdown of conventional equilibration and
thermalization [5,6]. On the other hand, such an overlap is not
warranted for all possible initial states, observables, or model
parameters, and integrability does not rigorously exclude the
existence of thermodynamic relaxation such as exponential
decay or diffusive transport. This type of relaxation, however,
is often traced back to chaos [7,8], being absent in integrable
systems.

In this context, two important and extensively studied
examples are (i) the one-dimensional XXZ spin- 1

2 model
and (ii) the (Fermi-)Hubbard chain. As typical for integrable
systems, the energy current is (i) strictly or (ii) at least partially
conserved [2] such that energy flow is ballistic at any finite
temperature [9–12], as signaled by a nonzero Drude weight
within linear-response theory. However, a much richer dynam-
ical phase diagram develops for other transport quantities. In
case (i) of the XXZ spin- 1

2 chain, the spin current is not strictly
conserved. While the partial conservation of this current and
a nonzero Drude have been proven analytically below the
isotropic point [3,4,13,14], strong numerical evidence for a
vanishing Drude weight and nonballistic dynamics has been
provided above this point [15–19]. In fact, for the latter
regime, clear signatures of diffusion have been reported in
various works [11,20–22]. In case (ii) of the Hubbard chain,
the situation appears to be similar for charge transport. Even
though clarifying the existence of a nonzero Drude weight
has turned out to be hard task analytically [23–26], numerical
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studies point to a vanishing Drude weight for strong particle-
particle interactions [27–29]. While signatures of diffusion
have been observed for such interactions also [29–32], a direct
detection of the characteristic Gaussian broadening is lacking.

The intention of our Rapid Communication is to clarify the
existence of charge diffusion in the Hubbard chain. For this
purpose, we study the nonequilibrium dynamics as resulting
for a convenient class of initial states. These initial states are
pure and realize density profiles where a peak with a maximum
possible amplitude is located in the center of the chain and
lies on top of a homogeneous many-body background. First,
we focus on a subclass with random internal degrees of
freedom and rely on the well-known concept of typicality
[33–46] to obtain the real-time broadening of density profiles
in the linear-response regime. In this regime, our large-scale
numerical simulations for chains as long as 20 sites allow us
to unveil the existence of remarkably clean charge diffusion,
as a key result of our Rapid Communication. Finally, we
extend our analysis to initial states without any randomness
and show that the dynamical behavior is stable against varying
details of the initial conditions. This stability is another central
result of our work and reveals that exactly the same charge
diffusion emerges in a far-from-equilibrium setup. These
findings clearly demonstrate that thermodynamic relaxation
can occur in integrable systems.

Model and observables. In one spatial dimension and with
periodic boundary conditions, the Hamiltonian of the Hubbard
model reads H = ∑L

r=1 hr ,

hr = −th
∑

s=↓,↑
(a†

r,sar+1,s + H.c.)

+U

(
nr,↓ − 1

2

)(
nr,↑ − 1

2

)
, (1)

where the operator a
†
r,s (ar,s) creates (annihilates) at site r

a fermion with spin s, th is the hopping matrix element,
and L is the number of sites. The operator nr,s = a

†
r,sar,s is

the local occupation number and U is the strength of the
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on-site interaction. For all values, this model is integrable and
the total particle numbers Ns = ∑

r nr,s and N = N↓ + N↑ are
strictly conserved quantities. We do not restrict ourselves to
a particular particle sector, i.e., we study the case 〈N〉 = L

[47]. It is worth mentioning that, via the Jordan-Wigner
transformation, this model can be mapped onto a spin- 1

2
two-leg ladder of length L, with XY exchange in the legs
and Ising exchange in the rungs [31]. In fact, this spin model
is used in our numerical simulations.

We are interested in the real-time dynamics of the local
occupation numbers nr,s and investigate the expectation values
pr,s(t) = tr[nr,s ρ(t)] for the density matrix ρ(t) at time t . (It is
important to note that t and th are different parameters.) Doing
so, we can follow the broadening of nonequilibrium density
profiles, as realized by the preparation of a proper initial state
ρ(0).

Initial states. In this Rapid Communication, we prepare
pure initial states ρ(0) = |ψ(0)〉〈ψ(0)|. To specify our |ψ(0)〉,
it is convenient to consider the common eigenbasis of all nr,s .
Let |ϕk〉 be this basis. Then, our initial states read

|ψ(0)〉 ∝ nL/2,↑|φ〉, |φ〉 =
4L∑

k=1

ck|ϕk〉, (2)

where ck are complex and yet arbitrary coefficients. Since
nL/2,↑ projects only onto states with a spin-up particle in the
middle of the chain, pL/2,↑(0) = 1 has the maximum value
possible.

Here, we focus on two particular choices for the coefficients
ck . First, we choose all ck to be the same number. Second, we
choose the ck at random according to the unitary invariant
Haar measure [37]. This choice means in practice that the real
and imaginary parts of the ck are independently drawn from
a Gaussian distribution with zero mean. For both the random
and equal choice of the ck , all pr �=L/2,s �=↑(0) = peq = 1

2 take
on their equilibrium value, and still pL/2,↑(0) = 1. Therefore,
the initial density profile features a central peak on top of a
homogeneous many-particle background.

A very similar form for the density profile also results for
the state

|ψdouble(0)〉 ∝ nL/2,↓|ψ(0)〉. (3)

Then, due to the additional projection, pL/2,↓(0) = 1 also for
equal and random ck . Therefore, the density profiles pr,↑(t) =
pr,↓(t) are identical for t = 0 and all later times t > 0 as well
(see Ref. [47] for the initial displacement).

All initial states introduced have to be considered as far-
from-equilibrium states: They are not only pure but also have
maximum pL/2,↑(0) = 1. Remarkably, however, the dynamics
of |ψ(0)〉 in Eq. (2) with random ck can be connected to the
linear-response Kubo formula, since the underlying |φ〉 is a
so-called typical state [22] (see also Refs. [33–46] for the
concept of typicality). Exploiting this typicality allows one to
derive the relation [47]

pr,↑(t) − peq = 2〈(nL/2,↑ − peq)(nr,↑(t) − peq)〉, (4)

where 〈·〉 = tr[·]/4L is the thermodynamic average at formally
infinite temperatures. Thus, for a typical state, the nonequilib-
rium expectation value is directly related to an equilibrium
correlation function. This fact enables a connection to the

Kubo formula via the variance

σ (t)2 =
L∑

r=1

r2 δpr,↑(t) −
[

L∑
r=1

r δpr,↑(t)

]2

, (5)

where δpr,↑(t) = 2[pr,↑(t) − peq] excludes the equilibrium
background and is normalized to

∑
r δpr,↑(t) = 1. As shown

in Ref. [48], the time derivative of this variance satisfies

d

dt
σ (t)2 = 2D(t), D(t) = 4

L

∫ t

0
dt ′〈j↑(t ′)j↑〉, (6)

where j↑ = −th
∑

r (ıa†
r,↑ar+1,↑ + H.c.) is the total current of

the spin-up particles and the quantity D(t) plays the role of a
time-dependent diffusion coefficient. For U = 0, [j↑,H ] = 0
necessarily leads to ballistic scaling D(t) ∝ t and σ (t) ∝ t .
For large U 	 th, signatures of diffusive scaling D(t) = const
and σ (t) ∝ √

t have been reported in Refs. [29,30]. So far,
however, a systematic analysis beyond the mere width of the
density profile is lacking and is the central issue of our work.

Numerical technique and results. From a numerical point of
view, the Hubbard chain is challenging since the Hilbert-space
dimension dim = 4L grows rapidly with L, e.g., much faster
than the also exponential increase dim = 2L in case of a
spin- 1

2 chain. As a consequence, exact diagonalization of
the Hamiltonian is only feasible for a few lattice sites and
a real-space experiment such as the one done in our Rapid
Communication would not be reasonable. Hence, we proceed
differently and profit from the fact that we only need to deal
with pure states. The time evolution of these states can be
obtained by forward-propagation methods such as fourth-order
Runge-Kutta [18,19,41] or more sophisticated schemes such as
Trotter decompositions or Chebyshev polynomials [29,49,50].
We apply a second-order Trotter formula with a time step
δt th = 0.05, sufficient to reach very good agreement with
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FIG. 1. Time-space density plot of the spin-up occupation
numbers pr,↑(t) for a typical initial state |ψ(0)〉 [where all spin-
down occupation numbers pr,↓(0) = peq] in the one-dimensional
Hubbard model with L = 18 sites and different interaction strengths:
(a) U/th = 16, (b) U/th = 4, (c) U/th = 0. While the broadening in
(a) points to charge diffusion, the broadening in (c) is clearly ballistic.
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FIG. 2. (a) Density profile pr,↑(t) as a function of site r at various
times t th = 0,1,2,4 for a Hubbard chain of length L = 20 and with
a strong interaction U/th = 16, shown in a semilog plot (symbols).
[The initial state |ψ(0)〉 is the same as the one in Fig. 1.] The data
can be described by Gaussian fits over several orders of magnitude
(curves). (b) Linear-response result for the time evolution of the
diffusion coefficient D(t) and profile width σ (t), as obtained in
Ref. [29] for length L = 18 and the same interaction U/th = 16
(curves). The standard deviation �(t), as resulting from the Gaussian
fits in (a), is indicated for comparison (symbols).

Chebyshev-polynomial algorithms. A massively parallelized
implementation of this formula allows us to treat Hubbard
chains as long as L = 20 sites. For this system size and a
maximum time t th = 8, the simulation takes about 9 h when
using 262 144 double-thread cores. Therefore, apart from the
L = 20 data depicted in Fig. 2, we focus on L = 18 to reduce
computational costs at least a bit.

Now, we turn to our numerical results. We start with the
initial state |ψ(0)〉 in Eq. (2) with a random choice of the
coefficients ck , i.e., a typical state. It is important to note that
we consider a single realization of the ck and do not perform
any kind of averaging. Still, we allow the ck to be different for
each simulation. In Figs. 1(a)–1(c) we depict our results for
the spin-up occupation numbers pr,↑(t) for a Hubbard chain
of length L = 18 and with different interactions U/th = 16,
4, 0, in a two-dimensional (2D) time-space density plot.
Several comments are in order. First, for the noninteracting
case U = 0 in Fig. 1(c), the real-time broadening of pr,↑(t) is
clearly linear and, as discussed above, has to occur due to the
strict conservation of the particle current. The pronounced
jets visible are typical for free-particle cases [11,22] and
propagate fast without any scattering until they eventually
hit the boundary of the chain at short times t th ∼ 4. Second,
for the interacting cases U/th = 16 and 4 in Figs. 1(a) and 1(b),
these jets and the linear broadening disappear as well, i.e., the
dynamics is not ballistic. Note that, in contrast, the flow of
energy is ballistic for arbitrary U [47]. Third, the broadening is
the slower the larger U because scattering becomes stronger as
U increases. In particular, for the largest U/th = 16 in Fig. 1(a)
and the maximum time t th = 8 calculated, the overall width
of pr,↑(t) is still smaller than the chain length. Therefore, we
can exclude trivial finite-size effects for such times [47].

To gain insight into the dynamics at large U/th = 16, we
show in Fig. 2(a) the site dependence of the profile pr,↑(t) for
various times t th = 0, 1, 2, 4, and for an even larger system size
L = 20. We do so by subtracting from pr,↑(t) the equilibrium
value peq and using a semilog plot, to visualize also the outer
tails of the profile. It is intriguing to see that, for all times t

depicted, the profiles can be described very well by Gaussians,

pr (t) − peq = 1

2

1√
2π �(t)

exp

[
− (r − L/2)2

2 �(t)2

]
, (7)

where the standard deviation �(t) occurs as the only free
parameter and is adjusted by fitting. The excellent fits over
several orders of magnitude are a central result of our work and
already provide strong evidence for the existence of diffusion.
Still, however, �(t) needs to scale as �(t) ∝ √

t .
For a final conclusion, we show in Fig. 2(b) the time

dependence of �(t) and compare to the linear response σ (t) in
Eq. (6), as resulting from the D(t) calculated in Ref. [29]
for the same interaction U/th = 16 and length L = 18.
While the perfect agreement illustrates the high accuracy
of the typicality relation, this agreement implies that the
linear-response result D(t) = const [29,30] also holds for our
nonequilibrium dynamics. Thus, diffusion clearly exists. Note
that the same conclusion can be drawn for smaller interactions
U/th = 8 also [47], where finite-size effects are still negligibly
small. For U/th � 8, however, significant finite-size effects
are known to occur [29] and a reliable conclusion on the
thermodynamic limit L → ∞ is impossible on the basis of
L ∼ 20.

Next, we intend to shed light on the role of the specific
initial-state realization, in particular, on the influence of
randomness. Therefore, in a first step, we investigate the initial
state |ψ(0)〉 in Eq. (2) again but now with equal coefficients ck .
Recall that, while this nonrandom state has exactly the same
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FIG. 3. Time-space density plot of the spin-up occupation num-
bers pr,↑(t) for the same model parameters as in Fig. 1 but for another
and untypical initial state |ψ(0)〉 [where all spin-down occupation
numbers pr,↓(0) = peq once again]. Compared to Fig. 1, jetlike
behavior is enhanced in (c) while no significant difference is visible
in (a).
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FIG. 4. Density profile pr,↑(t) vs site r for fixed times (a) t th = 1,
(b) t th = 4 for various initial states, i.e., |ψ(0)〉 (1) and |ψdouble(0)〉
(2) with random (r.) and equal (e.) coefficients in the underlying
superposition. As a guide to the eyes, Gaussian fits are indicated
(for 1, r.). While data for random initial states are practically
indistinguishable, data for nonrandom initial states differ only very
little.

initial density profile, the typicality relation does not need to
hold any further. For this state, we repeat the calculation in
Fig. 1 for L = 18 sites and different interactions U/th = 16,
4, 0 and summarize the corresponding results in Fig. 3. In
comparison to Fig. 1, jetlike behavior for U = 0 is enhanced
in Fig. 3(c) and emerges now for U/th = 4 in Fig. 3(b) in
addition. The same observation has been made for the XXZ

spin- 1
2 chain below the isotropic point [22]. Remarkably,

however, the diffusive behavior for U/th = 16 in Fig. 3(a)
turns out to be unaltered. In fact, this observation is different
to the one found for the XXZ spin- 1

2 chain above the isotropic
point [22], where the impact of nonrandomness is strong.

The above finding suggests that charge diffusion for strong
interactions U is stable against varying details of the initial
condition. To substantiate this suggestion, we finally extend

our analysis to the initial state |ψdouble(0)〉 in Eq. (3) and
study both random and equal coefficients ck . To repeat,
these states have the same initial density profile pr,↑(0) but
pr,↓(0) = pr,↑(0) now. For system size L = 18, interaction
U/th = 16, and two different times t th = 1, 4, we compare in
Fig. 4 the distribution pr,↑(t) for these states with the one for
the others. Apparently, pr,↑(t) is practically indistinguishable
for the two cases with random ck . Even though not shown
explicitly here, these two random cases also coincide for
other values of U [47]. While the two equal cases in Fig. 4
differ from the two random ones, this difference is minor
in view of the semilog plot used. These observations are
another central result of our work and clearly show that charge
diffusion in the strong-interaction limit does not depend on the
specific initial-state preparation, at least for the whole class of
nonequilibrium states investigated and at half filling.

Conclusions. In this Rapid Communication, we have
investigated the real-time broadening of charge in the Hubbard
chain at high temperatures. First, we have introduced a
class of pure initial states with density profiles where a
sharp peak is located in the middle of the chain and lies
on top of a homogeneous many-particle background. Then,
we have calculated the dynamics of these nonequilibrium
states, by using large-scale numerical simulations. Our results
for typical states have unveiled the existence of remarkably
clean charge diffusion in the limit of strong particle-particle
interactions, in perfect agreement with the Kubo formula. We
have additionally demonstrated that, in the half-filling sector,
this diffusive behavior is stable against varying details of the
initial conditions and occurs for nonrandom states as well.
Promising future directions of research include the extension
of our work to lower temperatures and other fillings.
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