001     837991
005     20210129231453.0
024 7 _ |a 10.1007/s00425-017-2719-3
|2 doi
024 7 _ |a 0032-0935
|2 ISSN
024 7 _ |a 1432-2048
|2 ISSN
024 7 _ |a pmid:28623562
|2 pmid
024 7 _ |a WOS:000411193600005
|2 WOS
037 _ _ |a FZJ-2017-06739
041 _ _ |a English
082 _ _ |a 580
100 1 _ |a Grimm, Eckhard
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Physical rupture of the xylem in developing sweet cherry fruit causes progressive decline in xylem sap inflow rate
260 _ _ |a Berlin
|c 2017
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1507637079_20017
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Xylem flow is progressively shut down during maturation beginning with minor veins at the stylar end and progressing to major veins and finally to bundles at the stem end.This study investigates the functionality of the xylem vascular system in developing sweet cherry fruit (Prunus avium L.). The tracers acid fuchsin and gadoteric acid were fed to the pedicel of detached fruit. The tracer distribution was studied using light microscopy and magnetic resonance imaging. The vasculature of the sweet cherry comprises five major bundles. Three of these supply the flesh; two enter the pit to supply the ovules. All vascular bundles branch into major and minor veins that interconnect via numerous anastomoses. The flow in the xylem as indexed by the tracer distribution decreases continuously during development. The decrease is first evident at the stylar (distal) end of the fruit during pit hardening and progresses basipetally towards the pedicel (proximal) end of the fruit at maturity. That growth strains are the cause of the decreased conductance is indicated by: elastic strain relaxation after tissue excision, the presence of ruptured vessels in vivo, the presence of intrafascicular cavities, and the absence of tyloses.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
536 _ _ |a DPPN - Deutsches Pflanzen Phänotypisierungsnetzwerk (BMBF-031A053A)
|0 G:(DE-Juel1)BMBF-031A053A
|c BMBF-031A053A
|f Deutsches Pflanzen Phänotypisierungsnetzwerk
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Pflugfelder, Daniel
|0 P:(DE-Juel1)131784
|b 1
700 1 _ |a van Dusschoten, Dagmar
|0 P:(DE-Juel1)129425
|b 2
700 1 _ |a Winkler, Andreas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Knoche, Moritz
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.1007/s00425-017-2719-3
|g Vol. 246, no. 4, p. 659 - 672
|0 PERI:(DE-600)1463030-8
|n 4
|p 659 - 672
|t Planta
|v 246
|y 2017
|x 1432-2048
856 4 _ |u https://juser.fz-juelich.de/record/837991/files/10.1007_s00425-017-2719-3.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837991/files/10.1007_s00425-017-2719-3.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837991/files/10.1007_s00425-017-2719-3.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837991/files/10.1007_s00425-017-2719-3.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837991/files/10.1007_s00425-017-2719-3.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837991/files/10.1007_s00425-017-2719-3.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:837991
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129425
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLANTA : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21