000837998 001__ 837998
000837998 005__ 20240610120738.0
000837998 0247_ $$2doi$$a10.1016/j.medengphy.2017.06.044
000837998 0247_ $$2ISSN$$a1350-4533
000837998 0247_ $$2ISSN$$a1873-4030
000837998 0247_ $$2pmid$$apmid:28734872
000837998 0247_ $$2WOS$$aWOS:000413177800003
000837998 0247_ $$2altmetric$$aaltmetric:26862196
000837998 037__ $$aFZJ-2017-06746
000837998 082__ $$a610
000837998 1001_ $$0P:(DE-Juel1)165285$$aHuisman, Brooke$$b0
000837998 245__ $$aModeling the cleavage of von Willebrand factor by ADAMTS13 protease in shear flow
000837998 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017
000837998 3367_ $$2DRIVER$$aarticle
000837998 3367_ $$2DataCite$$aOutput Types/Journal article
000837998 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1621607826_23315
000837998 3367_ $$2BibTeX$$aARTICLE
000837998 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837998 3367_ $$00$$2EndNote$$aJournal Article
000837998 520__ $$aVon Willebrand factor (VWF) is a key protein in hemostasis as it mediates adhesion of blood platelets to a site of vascular injury. A proper distribution of VWF lengths is important for normal functioning of hemostatic processes, because a diminished number of long VWF chains may significantly limit blood clotting and lead to bleeding, while an abundant number of long VWFs may result in undesired thrombotic events. VWF size distribution is controlled by ADAMTS13 protease, which can cleave VWF chains beyond a critical shear rate when the chains are stretched enough such that cleavage sites become accessible. To better understand the cleavage process, we model VWF cleavage in shear flow using mesoscopic hydrodynamic simulations. Two cleavage models are proposed, a geometrical model based on the degree of local stretching of VWF, and a tension-force model based on instantaneous tension force within VWF bonds. Both models capture the susceptibility of VWF to cleavage at high shear rates; however, the geometrical model appears to be much more robust than the force model. Our simulations show that VWF susceptibility to cleavage in shear flow becomes a universal function of shear rate, independent of VWF length for long enough chains. Furthermore, VWF is cleaved with a higher probability close to its ends in comparison to cleaving in the middle, which results into longer circulation lifetimes of VWF multimers. Simulations of dynamic cleavage of VWF show an exponential distribution of chain lengths, consistently with available in vitro experiments. The proposed cleavage models can be used in realistic simulations of hemostatic processes in blood flow.
000837998 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000837998 536__ $$0G:(DE-Juel1)jiff44_20140501$$aMargination and Adhesion of Particles and Cells in Blood Flow (jiff44_20140501)$$cjiff44_20140501$$fMargination and Adhesion of Particles and Cells in Blood Flow$$x1
000837998 536__ $$0G:(DE-Juel1)jics21_20131101$$aBlood Flow Resistance in Microvascular Networks (jics21_20131101)$$cjics21_20131101$$fBlood Flow Resistance in Microvascular Networks$$x2
000837998 588__ $$aDataset connected to CrossRef
000837998 7001_ $$0P:(DE-Juel1)166533$$aHoore, Masoud$$b1
000837998 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b2$$ufzj
000837998 7001_ $$0P:(DE-Juel1)140336$$aFedosov, Dmitry A.$$b3$$eCorresponding author
000837998 773__ $$0PERI:(DE-600)2019106-6$$a10.1016/j.medengphy.2017.06.044$$gVol. 48, p. 14 - 22$$p14 - 22$$tMedical engineering & physics$$v48$$x1350-4533$$y2017
000837998 8564_ $$uhttps://juser.fz-juelich.de/record/837998/files/1-s2.0-S1350453317301947-main.pdf$$yRestricted
000837998 8564_ $$uhttps://juser.fz-juelich.de/record/837998/files/1-s2.0-S1350453317301947-main.gif?subformat=icon$$xicon$$yRestricted
000837998 8564_ $$uhttps://juser.fz-juelich.de/record/837998/files/1-s2.0-S1350453317301947-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000837998 8564_ $$uhttps://juser.fz-juelich.de/record/837998/files/1-s2.0-S1350453317301947-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000837998 8564_ $$uhttps://juser.fz-juelich.de/record/837998/files/1-s2.0-S1350453317301947-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000837998 8564_ $$uhttps://juser.fz-juelich.de/record/837998/files/1-s2.0-S1350453317301947-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837998 909CO $$ooai:juser.fz-juelich.de:837998$$pVDB
000837998 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166533$$aForschungszentrum Jülich$$b1$$kFZJ
000837998 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b2$$kFZJ
000837998 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140336$$aForschungszentrum Jülich$$b3$$kFZJ
000837998 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000837998 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000837998 9141_ $$y2017
000837998 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000837998 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837998 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000837998 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED ENG PHYS : 2015
000837998 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837998 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837998 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837998 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837998 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837998 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837998 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837998 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000837998 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000837998 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837998 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik$$x0
000837998 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000837998 980__ $$ajournal
000837998 980__ $$aVDB
000837998 980__ $$aI:(DE-Juel1)ICS-2-20110106
000837998 980__ $$aI:(DE-82)080012_20140620
000837998 980__ $$aUNRESTRICTED
000837998 981__ $$aI:(DE-Juel1)IBI-5-20200312
000837998 981__ $$aI:(DE-Juel1)IAS-2-20090406