001     837998
005     20240610120738.0
024 7 _ |a 10.1016/j.medengphy.2017.06.044
|2 doi
024 7 _ |a 1350-4533
|2 ISSN
024 7 _ |a 1873-4030
|2 ISSN
024 7 _ |a pmid:28734872
|2 pmid
024 7 _ |a WOS:000413177800003
|2 WOS
024 7 _ |a altmetric:26862196
|2 altmetric
037 _ _ |a FZJ-2017-06746
082 _ _ |a 610
100 1 _ |a Huisman, Brooke
|0 P:(DE-Juel1)165285
|b 0
245 _ _ |a Modeling the cleavage of von Willebrand factor by ADAMTS13 protease in shear flow
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1621607826_23315
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Von Willebrand factor (VWF) is a key protein in hemostasis as it mediates adhesion of blood platelets to a site of vascular injury. A proper distribution of VWF lengths is important for normal functioning of hemostatic processes, because a diminished number of long VWF chains may significantly limit blood clotting and lead to bleeding, while an abundant number of long VWFs may result in undesired thrombotic events. VWF size distribution is controlled by ADAMTS13 protease, which can cleave VWF chains beyond a critical shear rate when the chains are stretched enough such that cleavage sites become accessible. To better understand the cleavage process, we model VWF cleavage in shear flow using mesoscopic hydrodynamic simulations. Two cleavage models are proposed, a geometrical model based on the degree of local stretching of VWF, and a tension-force model based on instantaneous tension force within VWF bonds. Both models capture the susceptibility of VWF to cleavage at high shear rates; however, the geometrical model appears to be much more robust than the force model. Our simulations show that VWF susceptibility to cleavage in shear flow becomes a universal function of shear rate, independent of VWF length for long enough chains. Furthermore, VWF is cleaved with a higher probability close to its ends in comparison to cleaving in the middle, which results into longer circulation lifetimes of VWF multimers. Simulations of dynamic cleavage of VWF show an exponential distribution of chain lengths, consistently with available in vitro experiments. The proposed cleavage models can be used in realistic simulations of hemostatic processes in blood flow.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
536 _ _ |a Margination and Adhesion of Particles and Cells in Blood Flow (jiff44_20140501)
|0 G:(DE-Juel1)jiff44_20140501
|c jiff44_20140501
|f Margination and Adhesion of Particles and Cells in Blood Flow
|x 1
536 _ _ |a Blood Flow Resistance in Microvascular Networks (jics21_20131101)
|0 G:(DE-Juel1)jics21_20131101
|c jics21_20131101
|f Blood Flow Resistance in Microvascular Networks
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hoore, Masoud
|0 P:(DE-Juel1)166533
|b 1
700 1 _ |a Gompper, Gerhard
|0 P:(DE-Juel1)130665
|b 2
|u fzj
700 1 _ |a Fedosov, Dmitry A.
|0 P:(DE-Juel1)140336
|b 3
|e Corresponding author
773 _ _ |a 10.1016/j.medengphy.2017.06.044
|g Vol. 48, p. 14 - 22
|0 PERI:(DE-600)2019106-6
|p 14 - 22
|t Medical engineering & physics
|v 48
|y 2017
|x 1350-4533
856 4 _ |u https://juser.fz-juelich.de/record/837998/files/1-s2.0-S1350453317301947-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837998/files/1-s2.0-S1350453317301947-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837998/files/1-s2.0-S1350453317301947-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837998/files/1-s2.0-S1350453317301947-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837998/files/1-s2.0-S1350453317301947-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837998/files/1-s2.0-S1350453317301947-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:837998
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)166533
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130665
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)140336
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Physical Basis of Diseases
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MED ENG PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)ICS-2-20110106
|k ICS-2
|l Theorie der Weichen Materie und Biophysik
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21