000838073 001__ 838073
000838073 005__ 20240619083543.0
000838073 0247_ $$2doi$$a10.1021/acs.langmuir.7b02313
000838073 0247_ $$2ISSN$$a0743-7463
000838073 0247_ $$2ISSN$$a1520-5827
000838073 0247_ $$2Handle$$a2128/15461
000838073 0247_ $$2WOS$$aWOS:000409292500016
000838073 037__ $$aFZJ-2017-06811
000838073 041__ $$aEnglish
000838073 082__ $$a670
000838073 1001_ $$0P:(DE-Juel1)166572$$aNiether, Doreen$$b0$$ufzj
000838073 245__ $$aRole of Hydrogen Bonding of Cyclodextrin–Drug Complexes Probed by Thermodiffusion
000838073 260__ $$aWashington, DC$$bACS Publ.$$c2017
000838073 3367_ $$2DRIVER$$aarticle
000838073 3367_ $$2DataCite$$aOutput Types/Journal article
000838073 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1507191494_26344
000838073 3367_ $$2BibTeX$$aARTICLE
000838073 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838073 3367_ $$00$$2EndNote$$aJournal Article
000838073 520__ $$aThe temperature-gradient induced migration of biomolecules, known as thermophoresis or thermodiffusion, changes upon ligand binding. In recent years, this effect has been used to determine protein-ligand binding constants. The mechanism through which thermodiffusive properties change when complexes are formed, however, is not understood. An important contribution to thermodiffusive properties originates from the thermal response of hydrogen bonds. Since there is a considerable difference between the degree of solvation of the protein-ligand complex and its isolated components, ligand-binding is accompanied by a significant change in hydration. The aim of the present work is therefore to investigate the role played by hydrogen bonding on the change in thermodiffusive behaviour upon ligand binding. As a model system we use cyclodextrins (CDs) and acetylsalicylic acid (ASA), where a quite significant change in hydration is expected, and where no conformational changes occur when a CD-ASA complex is formed in aqueous solution. Thermophoresis was investigated in a temperature range from 10 to 50°C by infrared thermal diffusion forced Rayleigh scattering (IR-TDFRS). NMR measurements were performed at 25°C to obtain information about the structure of the complexes. All CD-ASA complexes show a stronger affinity towards regions of lower temperature as compared to the free CDs. We found that the temperature sensitivity of thermophoresis correlates with the 1-octanol/water partition coefficient. This observation not only establishes the relation between thermodiffusion and the degree of hydrogen bonding, but also opens the possibility to relate thermodiffusive properties of complexes to their partition coefficient, which can not be determined otherwise. This concept is especially interesting for protein-ligand complexes where the protein undergoes a conformational change, different from the CD-ASA complexes, giving rise to additional changes in their hydrophilicity.
000838073 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000838073 588__ $$aDataset connected to CrossRef
000838073 7001_ $$0P:(DE-HGF)0$$aKawaguchi, Tsubasa$$b1
000838073 7001_ $$0P:(DE-Juel1)169893$$aHovancová, Jana$$b2
000838073 7001_ $$0P:(DE-HGF)0$$aEguchi, Kazuya$$b3
000838073 7001_ $$0P:(DE-Juel1)130616$$aDhont, Jan K. G.$$b4
000838073 7001_ $$0P:(DE-HGF)0$$aKita, Rio$$b5
000838073 7001_ $$0P:(DE-Juel1)131034$$aWiegand, Simone$$b6$$eCorresponding author
000838073 773__ $$0PERI:(DE-600)2005937-1$$a10.1021/acs.langmuir.7b02313$$gVol. 33, no. 34, p. 8483 - 8492$$n34$$p8483 - 8492$$tLangmuir$$v33$$x1520-5827$$y2017
000838073 8564_ $$uhttps://juser.fz-juelich.de/record/838073/files/acs.langmuir.7b02313.pdf$$yRestricted
000838073 8564_ $$uhttps://juser.fz-juelich.de/record/838073/files/achemso-CD-ASA_revised_new.pdf$$yOpenAccess
000838073 8564_ $$uhttps://juser.fz-juelich.de/record/838073/files/achemso-CD-ASA_revised_new.gif?subformat=icon$$xicon$$yOpenAccess
000838073 8564_ $$uhttps://juser.fz-juelich.de/record/838073/files/achemso-CD-ASA_revised_new.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000838073 8564_ $$uhttps://juser.fz-juelich.de/record/838073/files/achemso-CD-ASA_revised_new.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000838073 8564_ $$uhttps://juser.fz-juelich.de/record/838073/files/achemso-CD-ASA_revised_new.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000838073 8564_ $$uhttps://juser.fz-juelich.de/record/838073/files/achemso-CD-ASA_revised_new.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000838073 8564_ $$uhttps://juser.fz-juelich.de/record/838073/files/acs.langmuir.7b02313.gif?subformat=icon$$xicon$$yRestricted
000838073 8564_ $$uhttps://juser.fz-juelich.de/record/838073/files/acs.langmuir.7b02313.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838073 8564_ $$uhttps://juser.fz-juelich.de/record/838073/files/acs.langmuir.7b02313.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838073 8564_ $$uhttps://juser.fz-juelich.de/record/838073/files/acs.langmuir.7b02313.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838073 8564_ $$uhttps://juser.fz-juelich.de/record/838073/files/acs.langmuir.7b02313.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838073 909CO $$ooai:juser.fz-juelich.de:838073$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000838073 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166572$$aForschungszentrum Jülich$$b0$$kFZJ
000838073 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130616$$aForschungszentrum Jülich$$b4$$kFZJ
000838073 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich$$b6$$kFZJ
000838073 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000838073 9141_ $$y2017
000838073 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838073 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000838073 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLANGMUIR : 2015
000838073 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838073 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838073 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838073 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000838073 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000838073 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000838073 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000838073 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838073 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838073 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000838073 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838073 920__ $$lyes
000838073 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000838073 9801_ $$aFullTexts
000838073 980__ $$ajournal
000838073 980__ $$aVDB
000838073 980__ $$aUNRESTRICTED
000838073 980__ $$aI:(DE-Juel1)ICS-3-20110106