001     838073
005     20240619083543.0
024 7 _ |a 10.1021/acs.langmuir.7b02313
|2 doi
024 7 _ |a 0743-7463
|2 ISSN
024 7 _ |a 1520-5827
|2 ISSN
024 7 _ |a 2128/15461
|2 Handle
024 7 _ |a WOS:000409292500016
|2 WOS
037 _ _ |a FZJ-2017-06811
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a Niether, Doreen
|0 P:(DE-Juel1)166572
|b 0
|u fzj
245 _ _ |a Role of Hydrogen Bonding of Cyclodextrin–Drug Complexes Probed by Thermodiffusion
260 _ _ |a Washington, DC
|c 2017
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1507191494_26344
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The temperature-gradient induced migration of biomolecules, known as thermophoresis or thermodiffusion, changes upon ligand binding. In recent years, this effect has been used to determine protein-ligand binding constants. The mechanism through which thermodiffusive properties change when complexes are formed, however, is not understood. An important contribution to thermodiffusive properties originates from the thermal response of hydrogen bonds. Since there is a considerable difference between the degree of solvation of the protein-ligand complex and its isolated components, ligand-binding is accompanied by a significant change in hydration. The aim of the present work is therefore to investigate the role played by hydrogen bonding on the change in thermodiffusive behaviour upon ligand binding. As a model system we use cyclodextrins (CDs) and acetylsalicylic acid (ASA), where a quite significant change in hydration is expected, and where no conformational changes occur when a CD-ASA complex is formed in aqueous solution. Thermophoresis was investigated in a temperature range from 10 to 50°C by infrared thermal diffusion forced Rayleigh scattering (IR-TDFRS). NMR measurements were performed at 25°C to obtain information about the structure of the complexes. All CD-ASA complexes show a stronger affinity towards regions of lower temperature as compared to the free CDs. We found that the temperature sensitivity of thermophoresis correlates with the 1-octanol/water partition coefficient. This observation not only establishes the relation between thermodiffusion and the degree of hydrogen bonding, but also opens the possibility to relate thermodiffusive properties of complexes to their partition coefficient, which can not be determined otherwise. This concept is especially interesting for protein-ligand complexes where the protein undergoes a conformational change, different from the CD-ASA complexes, giving rise to additional changes in their hydrophilicity.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kawaguchi, Tsubasa
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hovancová, Jana
|0 P:(DE-Juel1)169893
|b 2
700 1 _ |a Eguchi, Kazuya
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Dhont, Jan K. G.
|0 P:(DE-Juel1)130616
|b 4
700 1 _ |a Kita, Rio
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wiegand, Simone
|0 P:(DE-Juel1)131034
|b 6
|e Corresponding author
773 _ _ |a 10.1021/acs.langmuir.7b02313
|g Vol. 33, no. 34, p. 8483 - 8492
|0 PERI:(DE-600)2005937-1
|n 34
|p 8483 - 8492
|t Langmuir
|v 33
|y 2017
|x 1520-5827
856 4 _ |u https://juser.fz-juelich.de/record/838073/files/acs.langmuir.7b02313.pdf
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/838073/files/achemso-CD-ASA_revised_new.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/838073/files/achemso-CD-ASA_revised_new.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/838073/files/achemso-CD-ASA_revised_new.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/838073/files/achemso-CD-ASA_revised_new.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/838073/files/achemso-CD-ASA_revised_new.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/838073/files/achemso-CD-ASA_revised_new.pdf?subformat=pdfa
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/838073/files/acs.langmuir.7b02313.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/838073/files/acs.langmuir.7b02313.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/838073/files/acs.langmuir.7b02313.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/838073/files/acs.langmuir.7b02313.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/838073/files/acs.langmuir.7b02313.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:838073
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166572
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130616
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131034
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b LANGMUIR : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-3-20110106
|k ICS-3
|l Weiche Materie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-3-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21