000838085 001__ 838085
000838085 005__ 20210129231504.0
000838085 0247_ $$2doi$$a10.1016/j.nimb.2016.12.012
000838085 0247_ $$2ISSN$$a0168-583X
000838085 0247_ $$2ISSN$$a0168-583x
000838085 0247_ $$2ISSN$$a1872-9584
000838085 0247_ $$2WOS$$aWOS:000398763500011
000838085 037__ $$aFZJ-2017-100008
000838085 082__ $$a530
000838085 1001_ $$0P:(DE-HGF)0$$aMa, Changdong$$b0
000838085 245__ $$aSurface modification of single crystal LiTaO3 by H and He implantation
000838085 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2017
000838085 3367_ $$2DRIVER$$aarticle
000838085 3367_ $$2DataCite$$aOutput Types/Journal article
000838085 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1506683554_19839
000838085 3367_ $$2BibTeX$$aARTICLE
000838085 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838085 3367_ $$00$$2EndNote$$aJournal Article
000838085 520__ $$aDefects production and evolution in H and He ions co-implanted LiTaO3 under different implantation order (H + He and He + H) are investigated. Rutherford backscattering spectrometry (RBS), infrared (IR) spectroscopy and transmission electron microscopy (TEM) are used to study the lattice damage, composition and structure change in the buried damage region. Obvious differences of ions aggregation mechanism are found in H and He implanted LiTaO3. Blistering or splitting of LiTaO3 is more easily achieved in the case where He is implanted first compared to the reverses case. Significant damage enhancement and micro-fractures are observed in samples with He preimplant. The dispersed damage in H-first sample is due to the destruction by He post-bombardment of H-clusters. This order effect indicates the strong aggregation and trapping ability of He ions and He bubbles. The effect of coimplantation parameters on the cleaving of LiTaO3 is discussed
000838085 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000838085 588__ $$aDataset connected to CrossRef
000838085 7001_ $$0P:(DE-HGF)0$$aLu, Fei$$b1$$eCorresponding author
000838085 7001_ $$0P:(DE-Juel1)145711$$aJin, Lei$$b2
000838085 7001_ $$0P:(DE-HGF)0$$aXu, Bo$$b3
000838085 7001_ $$0P:(DE-HGF)0$$aFan, Ranran$$b4
000838085 773__ $$0PERI:(DE-600)1466524-4$$a10.1016/j.nimb.2016.12.012$$gVol. 392, p. 62 - 66$$p62 - 66$$tNuclear instruments & methods in physics research / B$$v392$$x0168-583X$$y2017
000838085 8564_ $$uhttps://juser.fz-juelich.de/record/838085/files/1-s2.0-S0168583X16305389-main.pdf$$yRestricted
000838085 8564_ $$uhttps://juser.fz-juelich.de/record/838085/files/1-s2.0-S0168583X16305389-main.gif?subformat=icon$$xicon$$yRestricted
000838085 8564_ $$uhttps://juser.fz-juelich.de/record/838085/files/1-s2.0-S0168583X16305389-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838085 8564_ $$uhttps://juser.fz-juelich.de/record/838085/files/1-s2.0-S0168583X16305389-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838085 8564_ $$uhttps://juser.fz-juelich.de/record/838085/files/1-s2.0-S0168583X16305389-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838085 8564_ $$uhttps://juser.fz-juelich.de/record/838085/files/1-s2.0-S0168583X16305389-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838085 909CO $$ooai:juser.fz-juelich.de:838085$$pVDB
000838085 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b2$$kFZJ
000838085 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000838085 9141_ $$y2017
000838085 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000838085 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL INSTRUM METH B : 2015
000838085 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838085 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838085 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000838085 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000838085 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838085 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838085 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838085 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838085 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000838085 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000838085 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000838085 920__ $$lyes
000838085 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000838085 980__ $$ajournal
000838085 980__ $$aVDB
000838085 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000838085 980__ $$aUNRESTRICTED