000838087 001__ 838087
000838087 005__ 20210129231505.0
000838087 0247_ $$2doi$$a10.1016/j.ultramic.2016.12.024
000838087 0247_ $$2WOS$$aWOS:000403992200028
000838087 037__ $$aFZJ-2017-100010
000838087 041__ $$aEnglish
000838087 082__ $$a570
000838087 1001_ $$0P:(DE-HGF)0$$aWang, Z. C.$$b0
000838087 245__ $$aEffects of dynamic diffraction conditions on magnetic parameter determination in a double perovskite Sr$_{2}$ FeMoO$_{6}$ using electron energy-loss magnetic chiral dichroism
000838087 260__ $$aAmsterdam$$bElsevier Science$$c2017
000838087 3367_ $$2DRIVER$$aarticle
000838087 3367_ $$2DataCite$$aOutput Types/Journal article
000838087 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1507111212_26428
000838087 3367_ $$2BibTeX$$aARTICLE
000838087 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838087 3367_ $$00$$2EndNote$$aJournal Article
000838087 520__ $$aElectron energy-loss magnetic chiral dichroism (EMCD) spectroscopy, which is similar to the well-established X-ray magnetic circular dichroism spectroscopy (XMCD), can determine the quantitative magnetic parameters of materials with high spatial resolution. One of the major obstacles in quantitative analysis using the EMCD technique is the relatively poor signal-to-noise ratio (SNR), compared to XMCD. Here, in the example of a double perovskite Sr$_{2}$ FeMoO$_{6}$, we predicted the optimal dynamical diffraction conditions such as sample thickness, crystallographic orientation and detection aperture position by theoretical simulations. By using the optimized conditions, we showed that the SNR of experimental EMCD spectra can be significantly improved and the error of quantitative magnetic parameter determined by EMCD technique can be remarkably lowered. Our results demonstrate that, with enhanced SNR, the EMCD technique can be a unique tool to understand the structure-property relationship of magnetic materials particularly in the high-density magnetic recording and spintronic devices by quantitatively determining magnetic structure and properties at the nanometer scale.
000838087 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000838087 588__ $$aDataset connected to CrossRef
000838087 7001_ $$0P:(DE-HGF)0$$aZhong, X. Y.$$b1$$eCorresponding author
000838087 7001_ $$0P:(DE-Juel1)145711$$aJin, L.$$b2$$ufzj
000838087 7001_ $$0P:(DE-HGF)0$$aChen, X. F.$$b3
000838087 7001_ $$0P:(DE-HGF)0$$aMoritomo, Y.$$b4
000838087 7001_ $$0P:(DE-Juel1)130824$$aMayer, J.$$b5$$ufzj
000838087 773__ $$0PERI:(DE-600)1479043-9$$a10.1016/j.ultramic.2016.12.024$$gVol. 176, p. 212 - 217$$p212-217$$tUltramicroscopy$$v176$$x0304-3991$$y2017
000838087 8564_ $$uhttps://juser.fz-juelich.de/record/838087/files/1-s2.0-S0304399116304119-main.pdf$$yRestricted
000838087 8564_ $$uhttps://juser.fz-juelich.de/record/838087/files/1-s2.0-S0304399116304119-main.gif?subformat=icon$$xicon$$yRestricted
000838087 8564_ $$uhttps://juser.fz-juelich.de/record/838087/files/1-s2.0-S0304399116304119-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838087 8564_ $$uhttps://juser.fz-juelich.de/record/838087/files/1-s2.0-S0304399116304119-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838087 8564_ $$uhttps://juser.fz-juelich.de/record/838087/files/1-s2.0-S0304399116304119-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838087 8564_ $$uhttps://juser.fz-juelich.de/record/838087/files/1-s2.0-S0304399116304119-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838087 909CO $$ooai:juser.fz-juelich.de:838087$$pVDB
000838087 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000838087 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bULTRAMICROSCOPY : 2015
000838087 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838087 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838087 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838087 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000838087 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000838087 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838087 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838087 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838087 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838087 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000838087 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000838087 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000838087 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000838087 9141_ $$y2017
000838087 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b2$$kFZJ
000838087 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b5$$kFZJ
000838087 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000838087 920__ $$lyes
000838087 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000838087 980__ $$ajournal
000838087 980__ $$aVDB
000838087 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000838087 980__ $$aUNRESTRICTED