001     838087
005     20210129231505.0
024 7 _ |2 doi
|a 10.1016/j.ultramic.2016.12.024
024 7 _ |2 WOS
|a WOS:000403992200028
037 _ _ |a FZJ-2017-100010
041 _ _ |a English
082 _ _ |a 570
100 1 _ |0 P:(DE-HGF)0
|a Wang, Z. C.
|b 0
245 _ _ |a Effects of dynamic diffraction conditions on magnetic parameter determination in a double perovskite Sr$_{2}$ FeMoO$_{6}$ using electron energy-loss magnetic chiral dichroism
260 _ _ |a Amsterdam
|b Elsevier Science
|c 2017
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1507111212_26428
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Electron energy-loss magnetic chiral dichroism (EMCD) spectroscopy, which is similar to the well-established X-ray magnetic circular dichroism spectroscopy (XMCD), can determine the quantitative magnetic parameters of materials with high spatial resolution. One of the major obstacles in quantitative analysis using the EMCD technique is the relatively poor signal-to-noise ratio (SNR), compared to XMCD. Here, in the example of a double perovskite Sr$_{2}$ FeMoO$_{6}$, we predicted the optimal dynamical diffraction conditions such as sample thickness, crystallographic orientation and detection aperture position by theoretical simulations. By using the optimized conditions, we showed that the SNR of experimental EMCD spectra can be significantly improved and the error of quantitative magnetic parameter determined by EMCD technique can be remarkably lowered. Our results demonstrate that, with enhanced SNR, the EMCD technique can be a unique tool to understand the structure-property relationship of magnetic materials particularly in the high-density magnetic recording and spintronic devices by quantitatively determining magnetic structure and properties at the nanometer scale.
536 _ _ |0 G:(DE-HGF)POF3-143
|a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Zhong, X. Y.
|b 1
|e Corresponding author
700 1 _ |0 P:(DE-Juel1)145711
|a Jin, L.
|b 2
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Chen, X. F.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Moritomo, Y.
|b 4
700 1 _ |0 P:(DE-Juel1)130824
|a Mayer, J.
|b 5
|u fzj
773 _ _ |0 PERI:(DE-600)1479043-9
|a 10.1016/j.ultramic.2016.12.024
|g Vol. 176, p. 212 - 217
|p 212-217
|t Ultramicroscopy
|v 176
|x 0304-3991
|y 2017
856 4 _ |u https://juser.fz-juelich.de/record/838087/files/1-s2.0-S0304399116304119-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838087/files/1-s2.0-S0304399116304119-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838087/files/1-s2.0-S0304399116304119-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838087/files/1-s2.0-S0304399116304119-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838087/files/1-s2.0-S0304399116304119-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838087/files/1-s2.0-S0304399116304119-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:838087
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145711
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130824
|a Forschungszentrum Jülich
|b 5
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-143
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b ULTRAMICROSCOPY : 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21