001     838088
005     20210129231505.0
024 7 _ |a 10.1016/j.ultramic.2017.02.006
|2 doi
024 7 _ |a 2128/15423
|2 Handle
024 7 _ |a WOS:000404203500021
|2 WOS
024 7 _ |a altmetric:19993897
|2 altmetric
024 7 _ |a pmid:28434783
|2 pmid
037 _ _ |a FZJ-2017-100011
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Yang, Hao
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Electron ptychographic Phase Imaging of light elements in crystalline materials using Wigner Distribution deconvolution
260 _ _ |a Amsterdam
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1506684014_19838
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Recent development in fast pixelated detector technology has allowed a two dimensional diffraction pattern to be recorded at every probe position of a two dimensional raster scan in a scanning transmission electron microscope (STEM), forming an information-rich four dimensional (4D) dataset. Electron ptychography has been shown to enable efficient coherent phase imaging of weakly scattering objects from a 4D dataset recorded using a focused electron probe, which is optimised for simultaneous incoherent Z-contrast imaging and spectroscopy in STEM. Therefore coherent phase contrast and incoherent Z-contrast imaging modes can be efficiently combined to provide a good sensitivity of both light and heavy elements at atomic resolution. In this work, we explore the application of electron ptychography for atomic resolution imaging of strongly scattering crystalline specimens, and present experiments on imaging crystalline specimens including samples containing defects, under dynamical channelling conditions using an aberration corrected microscope. A ptychographic reconstruction method called Wigner distribution deconvolution (WDD) was implemented. Experimental results and simulation results suggest that ptychography provides a readily interpretable phase image and great sensitivity for imaging light elements at atomic resolution in relatively thin crystalline materials.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
700 1 _ |a MacLaren, Lan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Jones, Lewys
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Martinez, Gerardo T.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Simson, Martin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Huth, Martin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ryll, Henning
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Soltau, Heike
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Sagawa, Ryusuke
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Kondo, Yukihito
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Ophus, Colin
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Ercius, Peter
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Jin, Lei
|0 P:(DE-Juel1)145711
|b 12
700 1 _ |a Kovacs, Andras
|0 P:(DE-Juel1)144926
|b 13
700 1 _ |a Nellist, Peter D.
|0 P:(DE-HGF)0
|b 14
|e Corresponding author
773 _ _ |a 10.1016/j.ultramic.2017.02.006
|0 PERI:(DE-600)1479043-9
|p 173 - 179
|t Ultramicroscopy
|v 180
|y 2017
|x 0304-3991
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/838088/files/1-s2.0-S0304399117300773-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/838088/files/1-s2.0-S0304399117300773-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/838088/files/1-s2.0-S0304399117300773-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/838088/files/1-s2.0-S0304399117300773-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/838088/files/1-s2.0-S0304399117300773-main.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/838088/files/1-s2.0-S0304399117300773-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:838088
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)145711
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)144926
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ULTRAMICROSCOPY : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21