000838089 001__ 838089
000838089 005__ 20240610120744.0
000838089 0247_ $$2doi$$a10.1021/acsami.6b13821
000838089 0247_ $$2ISSN$$a1944-8244
000838089 0247_ $$2ISSN$$a1944-8252
000838089 0247_ $$2WOS$$aWOS:000394829800096
000838089 037__ $$aFZJ-2017-100012
000838089 082__ $$a540
000838089 1001_ $$0P:(DE-Juel1)145420$$aWei, Xian-Kui$$b0$$eCorresponding author
000838089 245__ $$aControlled Charging of Ferroelastic Domain Walls in Oxide Ferroelectrics
000838089 260__ $$aWashington, DC$$bSoc.$$c2017
000838089 3367_ $$2DRIVER$$aarticle
000838089 3367_ $$2DataCite$$aOutput Types/Journal article
000838089 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1506684182_19833
000838089 3367_ $$2BibTeX$$aARTICLE
000838089 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838089 3367_ $$00$$2EndNote$$aJournal Article
000838089 520__ $$aConductive domain walls (DWs) in ferroic oxides as device elements are a highly attractive research topic because of their robust and agile response to electric field. Charged DWs possessing metallic-type conductivity hold the highest promises in this aspect. However, their intricate creation, low stability, and interference with nonconductive DWs hinder their investigation and the progress toward future applications. Here, we find that conversion of the nominally neutral ferroelastic 90° DWs into partially charged DWs in Pb(Zr0.1Ti0.9)O3 thin films enables easy and robust control over the DW conductivity. By employing transmission electron microscopy, conductive atomic force microscopy and phase-field simulation, our study reveals that charging of the ferroelastic DWs is controlled by mutually coupled DW bending, type of doping, polarization orientation and work-function of the adjacent electrodes. Particularly, the doping outweighs other parameters in controlling the DW conductivity. Understanding the interplay of these key parameters not only allows us to control and optimize conductivity of such ferroelastic DWs in the oxide ferroelectrics but also paves the way for utilization of DW-based nanoelectronic devices in the future.
000838089 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000838089 588__ $$aDataset connected to CrossRef
000838089 7001_ $$00000-0002-8092-2026$$aSluka, Tomas$$b1
000838089 7001_ $$0P:(DE-HGF)0$$aFraygola, Barbara$$b2
000838089 7001_ $$0P:(DE-HGF)0$$aFeigl, Ludwig$$b3
000838089 7001_ $$0P:(DE-Juel1)145710$$aDu, Hongchu$$b4
000838089 7001_ $$0P:(DE-Juel1)145711$$aJin, Lei$$b5
000838089 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b6
000838089 7001_ $$0P:(DE-HGF)0$$aSetter, Nava$$b7
000838089 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.6b13821$$gVol. 9, no. 7, p. 6539 - 6546$$n7$$p6539 - 6546$$tACS applied materials & interfaces$$v9$$x1944-8252$$y2017
000838089 8564_ $$uhttps://juser.fz-juelich.de/record/838089/files/acsami.6b13821.pdf$$yRestricted
000838089 8564_ $$uhttps://juser.fz-juelich.de/record/838089/files/acsami.6b13821.gif?subformat=icon$$xicon$$yRestricted
000838089 8564_ $$uhttps://juser.fz-juelich.de/record/838089/files/acsami.6b13821.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838089 8564_ $$uhttps://juser.fz-juelich.de/record/838089/files/acsami.6b13821.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838089 8564_ $$uhttps://juser.fz-juelich.de/record/838089/files/acsami.6b13821.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838089 8564_ $$uhttps://juser.fz-juelich.de/record/838089/files/acsami.6b13821.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838089 909CO $$ooai:juser.fz-juelich.de:838089$$pVDB
000838089 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145420$$aForschungszentrum Jülich$$b0$$kFZJ
000838089 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145710$$aForschungszentrum Jülich$$b4$$kFZJ
000838089 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b5$$kFZJ
000838089 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b6$$kFZJ
000838089 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000838089 9141_ $$y2017
000838089 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838089 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838089 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838089 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2015
000838089 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838089 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838089 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838089 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838089 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000838089 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000838089 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2015
000838089 920__ $$lyes
000838089 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000838089 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000838089 980__ $$ajournal
000838089 980__ $$aVDB
000838089 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000838089 980__ $$aI:(DE-Juel1)PGI-5-20110106
000838089 980__ $$aUNRESTRICTED
000838089 981__ $$aI:(DE-Juel1)ER-C-1-20170209