001     838089
005     20240610120744.0
024 7 _ |a 10.1021/acsami.6b13821
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a WOS:000394829800096
|2 WOS
037 _ _ |a FZJ-2017-100012
082 _ _ |a 540
100 1 _ |a Wei, Xian-Kui
|0 P:(DE-Juel1)145420
|b 0
|e Corresponding author
245 _ _ |a Controlled Charging of Ferroelastic Domain Walls in Oxide Ferroelectrics
260 _ _ |a Washington, DC
|c 2017
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1506684182_19833
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Conductive domain walls (DWs) in ferroic oxides as device elements are a highly attractive research topic because of their robust and agile response to electric field. Charged DWs possessing metallic-type conductivity hold the highest promises in this aspect. However, their intricate creation, low stability, and interference with nonconductive DWs hinder their investigation and the progress toward future applications. Here, we find that conversion of the nominally neutral ferroelastic 90° DWs into partially charged DWs in Pb(Zr0.1Ti0.9)O3 thin films enables easy and robust control over the DW conductivity. By employing transmission electron microscopy, conductive atomic force microscopy and phase-field simulation, our study reveals that charging of the ferroelastic DWs is controlled by mutually coupled DW bending, type of doping, polarization orientation and work-function of the adjacent electrodes. Particularly, the doping outweighs other parameters in controlling the DW conductivity. Understanding the interplay of these key parameters not only allows us to control and optimize conductivity of such ferroelastic DWs in the oxide ferroelectrics but also paves the way for utilization of DW-based nanoelectronic devices in the future.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Sluka, Tomas
|0 0000-0002-8092-2026
|b 1
700 1 _ |a Fraygola, Barbara
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Feigl, Ludwig
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Du, Hongchu
|0 P:(DE-Juel1)145710
|b 4
700 1 _ |a Jin, Lei
|0 P:(DE-Juel1)145711
|b 5
700 1 _ |a Jia, Chun-Lin
|0 P:(DE-Juel1)130736
|b 6
700 1 _ |a Setter, Nava
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1021/acsami.6b13821
|g Vol. 9, no. 7, p. 6539 - 6546
|0 PERI:(DE-600)2467494-1
|n 7
|p 6539 - 6546
|t ACS applied materials & interfaces
|v 9
|y 2017
|x 1944-8252
856 4 _ |u https://juser.fz-juelich.de/record/838089/files/acsami.6b13821.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838089/files/acsami.6b13821.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838089/files/acsami.6b13821.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838089/files/acsami.6b13821.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838089/files/acsami.6b13821.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838089/files/acsami.6b13821.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:838089
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145420
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145710
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)145711
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130736
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21