000838120 001__ 838120
000838120 005__ 20220930130132.0
000838120 0247_ $$2doi$$a10.3389/fpls.2017.01680
000838120 0247_ $$2Handle$$a2128/15578
000838120 0247_ $$2pmid$$apmid:29033961
000838120 0247_ $$2WOS$$aWOS:000411902400001
000838120 0247_ $$2altmetric$$aaltmetric:26482863
000838120 037__ $$aFZJ-2017-06824
000838120 041__ $$aEnglish
000838120 082__ $$a570
000838120 1001_ $$0P:(DE-Juel1)129394$$aScharr, Hanno$$b0$$eCorresponding author$$ufzj
000838120 245__ $$aFast High Resolution Volume Carving for 3D Plant Shoot Reconstruction
000838120 260__ $$aLausanne$$bFrontiers Media88991$$c2017
000838120 3367_ $$2DRIVER$$aarticle
000838120 3367_ $$2DataCite$$aOutput Types/Journal article
000838120 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1519140740_5867
000838120 3367_ $$2BibTeX$$aARTICLE
000838120 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838120 3367_ $$00$$2EndNote$$aJournal Article
000838120 520__ $$aVolume carving is a well established method for visual hull reconstruction and has been successfully applied in plant phenotyping, especially for 3d reconstruction of small plants and seeds. When imaging larger plants at still relatively high spatial resolution (≤1 mm), well known implementations become slow or have prohibitively large memory needs. Here we present and evaluate a computationally efficient algorithm for volume carving, allowing e.g., 3D reconstruction of plant shoots. It combines a well-known multi-grid representation called “Octree” with an efficient image region integration scheme called “Integral image.” Speedup with respect to less efficient octree implementations is about 2 orders of magnitude, due to the introduced refinement strategy “Mark and refine.” Speedup is about a factor 1.6 compared to a highly optimized GPU implementation using equidistant voxel grids, even without using any parallelization. We demonstrate the application of this method for trait derivation of banana and maize plants.
000838120 536__ $$0G:(DE-HGF)POF3-583$$a583 - Innovative Synergisms (POF3-583)$$cPOF3-583$$fPOF III$$x0
000838120 536__ $$0G:(DE-Juel1)BMBF-031A053A$$aDPPN - Deutsches Pflanzen Phänotypisierungsnetzwerk (BMBF-031A053A)$$cBMBF-031A053A$$fDeutsches Pflanzen Phänotypisierungsnetzwerk$$x1
000838120 588__ $$aDataset connected to CrossRef
000838120 7001_ $$0P:(DE-Juel1)145988$$aBriese, Christoph$$b1
000838120 7001_ $$0P:(DE-Juel1)142405$$aEmbgenbroich, Patrick$$b2
000838120 7001_ $$0P:(DE-Juel1)129315$$aFischbach, Andreas$$b3$$ufzj
000838120 7001_ $$0P:(DE-Juel1)143649$$aFiorani, Fabio$$b4$$ufzj
000838120 7001_ $$0P:(DE-Juel1)142555$$aMüller-Linow, Mark$$b5$$ufzj
000838120 773__ $$0PERI:(DE-600)2711035-7$$a10.3389/fpls.2017.01680$$gVol. 8, p. 1680$$p1680$$tFrontiers in Functional Plant Ecology$$v8$$x1664-462X$$y2017
000838120 8564_ $$uhttps://juser.fz-juelich.de/record/838120/files/fpls-08-01680.pdf$$yOpenAccess
000838120 8564_ $$uhttps://juser.fz-juelich.de/record/838120/files/fpls-08-01680.gif?subformat=icon$$xicon$$yOpenAccess
000838120 8564_ $$uhttps://juser.fz-juelich.de/record/838120/files/fpls-08-01680.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000838120 8564_ $$uhttps://juser.fz-juelich.de/record/838120/files/fpls-08-01680.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000838120 8564_ $$uhttps://juser.fz-juelich.de/record/838120/files/fpls-08-01680.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000838120 8564_ $$uhttps://juser.fz-juelich.de/record/838120/files/fpls-08-01680.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000838120 8767_ $$92017-10-04$$d2017-10-04$$eAPC$$jDeposit$$lDeposit: Frontiers$$zUSD 1904,85
000838120 909CO $$ooai:juser.fz-juelich.de:838120$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000838120 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129394$$aForschungszentrum Jülich$$b0$$kFZJ
000838120 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129315$$aForschungszentrum Jülich$$b3$$kFZJ
000838120 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143649$$aForschungszentrum Jülich$$b4$$kFZJ
000838120 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142555$$aForschungszentrum Jülich$$b5$$kFZJ
000838120 9131_ $$0G:(DE-HGF)POF3-583$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vInnovative Synergisms$$x0
000838120 9141_ $$y2017
000838120 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838120 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000838120 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838120 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer Review unknown
000838120 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000838120 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000838120 980__ $$ajournal
000838120 980__ $$aVDB
000838120 980__ $$aI:(DE-Juel1)IBG-2-20101118
000838120 980__ $$aAPC
000838120 980__ $$aUNRESTRICTED
000838120 9801_ $$aAPC
000838120 9801_ $$aFullTexts