000838124 001__ 838124
000838124 005__ 20240712100844.0
000838124 0247_ $$2doi$$a10.5194/acp-2017-644
000838124 0247_ $$2ISSN$$a1680-7367
000838124 0247_ $$2ISSN$$a1680-7375
000838124 0247_ $$2Handle$$a2128/15452
000838124 0247_ $$2altmetric$$aaltmetric:22194482
000838124 037__ $$aFZJ-2017-06828
000838124 082__ $$a550
000838124 1001_ $$0P:(DE-Juel1)165731$$aKrisch, Isabell$$b0$$eCorresponding author
000838124 245__ $$aFirst tomographic observations of gravity waves by the infrared limb imager GLORIA
000838124 260__ $$aKatlenburg-Lindau$$bEGU$$c2017
000838124 3367_ $$2DRIVER$$aarticle
000838124 3367_ $$2DataCite$$aOutput Types/Journal article
000838124 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1507180819_26344
000838124 3367_ $$2BibTeX$$aARTICLE
000838124 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838124 3367_ $$00$$2EndNote$$aJournal Article
000838124 520__ $$aAtmospheric gravity waves are a major cause of uncertainty in global atmospheric models. This uncertainty affects regional climate projections and seasonal weather predictions. Improving the representation of gravity waves in global atmospheric models, is therefore of primary interest. In this regard, measurements providing an accurate 3-D characterization of gravity waves are needed. Using the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), the first airborne implementation of a novel infrared limb imaging technique, a gravity wave event over Iceland was measured. An air volume disturbed by this gravity wave, was investigated from different angles by encircling the volume with a closed flight pattern. Using a tomographic retrieval approach the measurements of this air mass under different angles allowed for a 3-D reconstruction of the temperature and trace gas structure. The temperature measurements were used to derive gravity wave amplitudes, 3-D wave vectors, and direction-resolved momentum fluxes. These parameters facilitated the backtracing of the waves to their sources on the south coast of Iceland. Two wave packets are distinguished, one stemming from the main mountain ridge in the South of Iceland, a second one from the smaller mountains in the North. The total, area-integrated fluxes of these two wave packets are determined. Following the waves forward with a ray-tracing model highlighted the importance of 3-D propagation, an effect generally neglected in global atmospheric models.
000838124 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000838124 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000838124 588__ $$aDataset connected to CrossRef
000838124 7001_ $$0P:(DE-Juel1)129143$$aPreusse, Peter$$b1$$ufzj
000838124 7001_ $$00000-0001-9095-8332$$aUngermann, Jörn$$b2
000838124 7001_ $$00000-0003-0936-0216$$aDörnbrack, Andreas$$b3
000838124 7001_ $$0P:(DE-HGF)0$$aEckermann, Stephen D.$$b4
000838124 7001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b5
000838124 7001_ $$0P:(DE-HGF)0$$aFriedl-Vallon, Felix$$b6
000838124 7001_ $$0P:(DE-Juel1)129128$$aKaufmann, Martin$$b7$$ufzj
000838124 7001_ $$0P:(DE-HGF)0$$aOelhaf, Hermann$$b8
000838124 7001_ $$00000-0003-1508-5900$$aRapp, Markus$$b9
000838124 7001_ $$0P:(DE-Juel1)169715$$aStrube, Cornelia$$b10$$ufzj
000838124 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b11$$ufzj
000838124 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acp-2017-644$$gp. 1 - 21$$p1 - 21$$tAtmospheric chemistry and physics / Discussions$$v644$$x1680-7375$$y2017
000838124 8564_ $$uhttps://juser.fz-juelich.de/record/838124/files/acp-2017-644.pdf$$yOpenAccess
000838124 8564_ $$uhttps://juser.fz-juelich.de/record/838124/files/acp-2017-644.gif?subformat=icon$$xicon$$yOpenAccess
000838124 8564_ $$uhttps://juser.fz-juelich.de/record/838124/files/acp-2017-644.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000838124 8564_ $$uhttps://juser.fz-juelich.de/record/838124/files/acp-2017-644.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000838124 8564_ $$uhttps://juser.fz-juelich.de/record/838124/files/acp-2017-644.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000838124 8564_ $$uhttps://juser.fz-juelich.de/record/838124/files/acp-2017-644.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000838124 909CO $$ooai:juser.fz-juelich.de:838124$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000838124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165731$$aForschungszentrum Jülich$$b0$$kFZJ
000838124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129143$$aForschungszentrum Jülich$$b1$$kFZJ
000838124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich$$b5$$kFZJ
000838124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129128$$aForschungszentrum Jülich$$b7$$kFZJ
000838124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169715$$aForschungszentrum Jülich$$b10$$kFZJ
000838124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b11$$kFZJ
000838124 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000838124 9141_ $$y2017
000838124 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000838124 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000838124 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000838124 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000838124 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838124 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838124 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000838124 9801_ $$aFullTexts
000838124 980__ $$ajournal
000838124 980__ $$aVDB
000838124 980__ $$aUNRESTRICTED
000838124 980__ $$aI:(DE-Juel1)IEK-7-20101013
000838124 981__ $$aI:(DE-Juel1)ICE-4-20101013