001     838124
005     20240712100844.0
024 7 _ |a 10.5194/acp-2017-644
|2 doi
024 7 _ |a 1680-7367
|2 ISSN
024 7 _ |a 1680-7375
|2 ISSN
024 7 _ |a 2128/15452
|2 Handle
024 7 _ |a altmetric:22194482
|2 altmetric
037 _ _ |a FZJ-2017-06828
082 _ _ |a 550
100 1 _ |a Krisch, Isabell
|0 P:(DE-Juel1)165731
|b 0
|e Corresponding author
245 _ _ |a First tomographic observations of gravity waves by the infrared limb imager GLORIA
260 _ _ |a Katlenburg-Lindau
|c 2017
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1507180819_26344
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Atmospheric gravity waves are a major cause of uncertainty in global atmospheric models. This uncertainty affects regional climate projections and seasonal weather predictions. Improving the representation of gravity waves in global atmospheric models, is therefore of primary interest. In this regard, measurements providing an accurate 3-D characterization of gravity waves are needed. Using the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), the first airborne implementation of a novel infrared limb imaging technique, a gravity wave event over Iceland was measured. An air volume disturbed by this gravity wave, was investigated from different angles by encircling the volume with a closed flight pattern. Using a tomographic retrieval approach the measurements of this air mass under different angles allowed for a 3-D reconstruction of the temperature and trace gas structure. The temperature measurements were used to derive gravity wave amplitudes, 3-D wave vectors, and direction-resolved momentum fluxes. These parameters facilitated the backtracing of the waves to their sources on the south coast of Iceland. Two wave packets are distinguished, one stemming from the main mountain ridge in the South of Iceland, a second one from the smaller mountains in the North. The total, area-integrated fluxes of these two wave packets are determined. Following the waves forward with a ray-tracing model highlighted the importance of 3-D propagation, an effect generally neglected in global atmospheric models.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Preusse, Peter
|0 P:(DE-Juel1)129143
|b 1
|u fzj
700 1 _ |a Ungermann, Jörn
|0 0000-0001-9095-8332
|b 2
700 1 _ |a Dörnbrack, Andreas
|0 0000-0003-0936-0216
|b 3
700 1 _ |a Eckermann, Stephen D.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ern, Manfred
|0 P:(DE-Juel1)129117
|b 5
700 1 _ |a Friedl-Vallon, Felix
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Kaufmann, Martin
|0 P:(DE-Juel1)129128
|b 7
|u fzj
700 1 _ |a Oelhaf, Hermann
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Rapp, Markus
|0 0000-0003-1508-5900
|b 9
700 1 _ |a Strube, Cornelia
|0 P:(DE-Juel1)169715
|b 10
|u fzj
700 1 _ |a Riese, Martin
|0 P:(DE-Juel1)129145
|b 11
|u fzj
773 _ _ |a 10.5194/acp-2017-644
|g p. 1 - 21
|0 PERI:(DE-600)2069857-4
|p 1 - 21
|t Atmospheric chemistry and physics / Discussions
|v 644
|y 2017
|x 1680-7375
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/838124/files/acp-2017-644.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/838124/files/acp-2017-644.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/838124/files/acp-2017-644.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/838124/files/acp-2017-644.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/838124/files/acp-2017-644.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/838124/files/acp-2017-644.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:838124
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165731
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129143
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129117
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129128
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)169715
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)129145
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21