001     838128
005     20240712100848.0
024 7 _ |a 10.5194/amt-2017-118
|2 doi
024 7 _ |a 2128/15450
|2 Handle
024 7 _ |a altmetric:19235296
|2 altmetric
037 _ _ |a FZJ-2017-06832
082 _ _ |a 550
100 1 _ |a Song, Rui
|0 P:(DE-Juel1)167408
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Tomographic reconstruction of atmospheric gravity wave parameters from airglow observations
260 _ _ |a Katlenburg-Lindau
|c 2017
|b Copernicus
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1507126137_26433
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Gravity waves (GWs) play an important role in atmospheric dynamics. Especially in the mesosphere and lower thermosphere (MLT) dissipating GWs provide a major contribution to the driving of the global wind system. Therefore global observations of GWs in the MLT region are of particular interest. The small scales of GWs, however, pose a major problem for the observation of GWs from space. We propose a new observation strategy for GWs in the mesopause region by combining limb and sub-limb satellite-borne remote sensing measurements for improving the spatial resolution of temperatures that are retrieved from atmospheric soundings. In our study, we simulate satellite observations of the rotational structure of the O2 A-band nightglow. A key element of the new method is the ability of the instrument or the satellite to operate in so called "target mode", i.e. to stare at a particular point in the atmosphere and collect radiances at different viewing angles. These multi-angle measurements of a selected region allow for tomographic reconstruction of a 2-dimensional atmospheric state, in particular of gravity wave structures. As no real data is available, the feasibility of this tomographic retrieval is carried out with simulation data in this work. It shows that one major advantage of this observation strategy is that much smaller scale GWs can be observed. We derive a GW sensitivity function, and it is shown that "target mode" observations are able to capture GWs with horizontal wavelengths as short as ~ 50 km for a large range of vertical wavelengths. This is far better than the horizontal wavelength limit of 100–200 km obtained for conventional limb sounding
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kaufmann, Martin
|0 P:(DE-Juel1)129128
|b 1
|u fzj
700 1 _ |a Ungermann, Jörn
|0 0000-0001-9095-8332
|b 2
700 1 _ |a Ern, Manfred
|0 P:(DE-Juel1)129117
|b 3
700 1 _ |a Liu, Guang
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Riese, Martin
|0 P:(DE-Juel1)129145
|b 5
|u fzj
773 _ _ |a 10.5194/amt-2017-118
|g p. 1 - 18
|0 PERI:(DE-600)2507817-3
|p 1 - 18
|t Atmospheric measurement techniques discussions
|v 118
|y 2017
|x 1867-8610
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/838128/files/amt-2017-118.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/838128/files/amt-2017-118.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/838128/files/amt-2017-118.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/838128/files/amt-2017-118.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/838128/files/amt-2017-118.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/838128/files/amt-2017-118.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:838128
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167408
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129128
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129117
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129145
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21