000838175 001__ 838175
000838175 005__ 20240711113801.0
000838175 0247_ $$2doi$$a10.1088/1402-4896/aa89ca
000838175 0247_ $$2ISSN$$a0031-8949
000838175 0247_ $$2ISSN$$a1402-4896
000838175 0247_ $$2Handle$$a2128/15462
000838175 0247_ $$2WOS$$aWOS:000414120500018
000838175 0247_ $$2altmetric$$aaltmetric:26338620
000838175 037__ $$aFZJ-2017-06849
000838175 082__ $$a530
000838175 1001_ $$0P:(DE-Juel1)165905$$aRomazanov, J.$$b0$$eCorresponding author
000838175 245__ $$aFirst ERO2.0 modeling of Be erosion and non-local transport in JET ITER-like wall
000838175 260__ $$aBristol$$bIoP Publ.$$c2017
000838175 3367_ $$2DRIVER$$aarticle
000838175 3367_ $$2DataCite$$aOutput Types/Journal article
000838175 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1520954188_30683
000838175 3367_ $$2BibTeX$$aARTICLE
000838175 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838175 3367_ $$00$$2EndNote$$aJournal Article
000838175 520__ $$aERO is a Monte-Carlo code for modeling plasma-wall interaction and 3D plasma impurity transport for applications in fusion research. The code has undergone a significant upgrade (ERO2.0) which allows increasing the simulation volume in order to cover the entire plasma edge of a fusion device, allowing a more self-consistent treatment of impurity transport and comparison with a larger number and variety of experimental diagnostics. In this contribution, the physics-relevant technical innovations of the new code version are described and discussed. The new capabilities of the code are demonstrated by modeling of beryllium (Be) erosion of the main wall during JET limiter discharges. Results for erosion patterns along the limiter surfaces and global Be transport including incident particle distributions are presented. A novel synthetic diagnostic, which mimics experimental wide-angle 2D camera images, is presented and used for validating various aspects of the code, including erosion, magnetic shadowing, non-local impurity transport, and light emission simulation.
000838175 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000838175 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000838175 536__ $$0G:(DE-Juel1)jiek43_20170501$$a3D Monte-Carlo simulations of plasma-wall interaction and impurity transport in fusion devices (jiek43_20170501)$$cjiek43_20170501$$f3D Monte-Carlo simulations of plasma-wall interaction and impurity transport in fusion devices$$x2
000838175 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x3
000838175 588__ $$aDataset connected to CrossRef
000838175 7001_ $$0P:(DE-Juel1)7884$$aBorodin, D.$$b1
000838175 7001_ $$0P:(DE-Juel1)2620$$aKirschner, A.$$b2
000838175 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b3
000838175 7001_ $$0P:(DE-HGF)0$$aSilburn, S.$$b4
000838175 7001_ $$0P:(DE-Juel1)130040$$aHuber, Alexander$$b5$$ufzj
000838175 7001_ $$0P:(DE-Juel1)132145$$aHuber, V.$$b6$$ufzj
000838175 7001_ $$0P:(DE-HGF)0$$aBufferand, H.$$b7
000838175 7001_ $$00000-0002-6921-0116$$aFirdaouss, M.$$b8
000838175 7001_ $$0P:(DE-Juel1)143606$$aBrömmel, D.$$b9$$ufzj
000838175 7001_ $$0P:(DE-Juel1)151300$$aSteinbusch, B.$$b10$$ufzj
000838175 7001_ $$0P:(DE-Juel1)132115$$aGibbon, P.$$b11
000838175 7001_ $$00000-0002-6435-1884$$aLasa, A.$$b12
000838175 7001_ $$0P:(DE-Juel1)171707$$aBorodkina, I.$$b13$$ufzj
000838175 7001_ $$0P:(DE-Juel1)171509$$aEksaeva, A.$$b14$$ufzj
000838175 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch$$b15
000838175 773__ $$0PERI:(DE-600)1477351-x$$a10.1088/1402-4896/aa89ca$$gVol. T170, p. 014018 -$$p014018 -$$tPhysica scripta$$vT170$$x1402-4896$$y2017
000838175 8564_ $$uhttps://juser.fz-juelich.de/record/838175/files/Romazanov_2017_Phys._Scr._2017_014018.pdf$$yOpenAccess
000838175 8564_ $$uhttps://juser.fz-juelich.de/record/838175/files/Romazanov_2017_Phys._Scr._2017_014018.gif?subformat=icon$$xicon$$yOpenAccess
000838175 8564_ $$uhttps://juser.fz-juelich.de/record/838175/files/Romazanov_2017_Phys._Scr._2017_014018.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000838175 8564_ $$uhttps://juser.fz-juelich.de/record/838175/files/Romazanov_2017_Phys._Scr._2017_014018.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000838175 8564_ $$uhttps://juser.fz-juelich.de/record/838175/files/Romazanov_2017_Phys._Scr._2017_014018.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000838175 8564_ $$uhttps://juser.fz-juelich.de/record/838175/files/Romazanov_2017_Phys._Scr._2017_014018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000838175 909CO $$ooai:juser.fz-juelich.de:838175$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000838175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165905$$aForschungszentrum Jülich$$b0$$kFZJ
000838175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7884$$aForschungszentrum Jülich$$b1$$kFZJ
000838175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2620$$aForschungszentrum Jülich$$b2$$kFZJ
000838175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b3$$kFZJ
000838175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130040$$aForschungszentrum Jülich$$b5$$kFZJ
000838175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132145$$aForschungszentrum Jülich$$b6$$kFZJ
000838175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143606$$aForschungszentrum Jülich$$b9$$kFZJ
000838175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151300$$aForschungszentrum Jülich$$b10$$kFZJ
000838175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132115$$aForschungszentrum Jülich$$b11$$kFZJ
000838175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171707$$aForschungszentrum Jülich$$b13$$kFZJ
000838175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171509$$aForschungszentrum Jülich$$b14$$kFZJ
000838175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b15$$kFZJ
000838175 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000838175 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000838175 9141_ $$y2017
000838175 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838175 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000838175 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838175 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838175 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838175 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000838175 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000838175 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838175 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000838175 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838175 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000838175 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000838175 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000838175 9801_ $$aFullTexts
000838175 980__ $$ajournal
000838175 980__ $$aVDB
000838175 980__ $$aI:(DE-Juel1)IEK-4-20101013
000838175 980__ $$aI:(DE-Juel1)JSC-20090406
000838175 980__ $$aI:(DE-82)080012_20140620
000838175 980__ $$aUNRESTRICTED
000838175 981__ $$aI:(DE-Juel1)IFN-1-20101013