001     838175
005     20260127144211.0
024 7 _ |2 doi
|a 10.1088/1402-4896/aa89ca
024 7 _ |2 ISSN
|a 0031-8949
024 7 _ |2 ISSN
|a 1402-4896
024 7 _ |2 Handle
|a 2128/15462
024 7 _ |2 WOS
|a WOS:000414120500018
024 7 _ |2 altmetric
|a altmetric:26338620
037 _ _ |a FZJ-2017-06849
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)165905
|a Romazanov, J.
|b 0
|e Corresponding author
245 _ _ |a First ERO2.0 modeling of Be erosion and non-local transport in JET ITER-like wall
260 _ _ |a Bristol
|b IoP Publ.
|c 2017
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1520954188_30683
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a ERO is a Monte-Carlo code for modeling plasma-wall interaction and 3D plasma impurity transport for applications in fusion research. The code has undergone a significant upgrade (ERO2.0) which allows increasing the simulation volume in order to cover the entire plasma edge of a fusion device, allowing a more self-consistent treatment of impurity transport and comparison with a larger number and variety of experimental diagnostics. In this contribution, the physics-relevant technical innovations of the new code version are described and discussed. The new capabilities of the code are demonstrated by modeling of beryllium (Be) erosion of the main wall during JET limiter discharges. Results for erosion patterns along the limiter surfaces and global Be transport including incident particle distributions are presented. A novel synthetic diagnostic, which mimics experimental wide-angle 2D camera images, is presented and used for validating various aspects of the code, including erosion, magnetic shadowing, non-local impurity transport, and light emission simulation.
536 _ _ |0 G:(DE-HGF)POF3-174
|a 174 - Plasma-Wall-Interaction (POF3-174)
|c POF3-174
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-511
|a 511 - Computational Science and Mathematical Methods (POF3-511)
|c POF3-511
|f POF III
|x 1
536 _ _ |0 G:(DE-Juel1)jiek43_20170501
|a 3D Monte-Carlo simulations of plasma-wall interaction and impurity transport in fusion devices (jiek43_20170501)
|c jiek43_20170501
|f 3D Monte-Carlo simulations of plasma-wall interaction and impurity transport in fusion devices
|x 2
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|c HITEC-20170406
|x 3
536 _ _ |0 G:(DE-Juel-1)SDLPP
|a Simulation and Data Lab Plasma Physics
|c SDLPP
|x 4
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)7884
|a Borodin, D.
|b 1
700 1 _ |0 P:(DE-Juel1)2620
|a Kirschner, A.
|b 2
700 1 _ |0 P:(DE-Juel1)129976
|a Brezinsek, S.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Silburn, S.
|b 4
700 1 _ |0 P:(DE-Juel1)130040
|a Huber, Alexander
|b 5
|u fzj
700 1 _ |0 P:(DE-Juel1)132145
|a Huber, V.
|b 6
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Bufferand, H.
|b 7
700 1 _ |0 0000-0002-6921-0116
|a Firdaouss, M.
|b 8
700 1 _ |0 P:(DE-Juel1)143606
|a Brömmel, D.
|b 9
|u fzj
700 1 _ |0 P:(DE-Juel1)151300
|a Steinbusch, B.
|b 10
|u fzj
700 1 _ |0 P:(DE-Juel1)132115
|a Gibbon, P.
|b 11
700 1 _ |0 0000-0002-6435-1884
|a Lasa, A.
|b 12
700 1 _ |0 P:(DE-Juel1)171707
|a Borodkina, I.
|b 13
|u fzj
700 1 _ |0 P:(DE-Juel1)171509
|a Eksaeva, A.
|b 14
|u fzj
700 1 _ |0 P:(DE-Juel1)157640
|a Linsmeier, Ch
|b 15
773 _ _ |0 PERI:(DE-600)1477351-x
|a 10.1088/1402-4896/aa89ca
|g Vol. T170, p. 014018 -
|p 014018 -
|t Physica scripta
|v T170
|x 1402-4896
|y 2017
856 4 _ |u https://juser.fz-juelich.de/record/838175/files/Romazanov_2017_Phys._Scr._2017_014018.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838175/files/Romazanov_2017_Phys._Scr._2017_014018.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838175/files/Romazanov_2017_Phys._Scr._2017_014018.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838175/files/Romazanov_2017_Phys._Scr._2017_014018.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838175/files/Romazanov_2017_Phys._Scr._2017_014018.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838175/files/Romazanov_2017_Phys._Scr._2017_014018.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:838175
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)165905
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)7884
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)2620
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129976
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130040
|a Forschungszentrum Jülich
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)132145
|a Forschungszentrum Jülich
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)143606
|a Forschungszentrum Jülich
|b 9
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)151300
|a Forschungszentrum Jülich
|b 10
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)132115
|a Forschungszentrum Jülich
|b 11
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)171707
|a Forschungszentrum Jülich
|b 13
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)171509
|a Forschungszentrum Jülich
|b 14
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)157640
|a Forschungszentrum Jülich
|b 15
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-174
|1 G:(DE-HGF)POF3-170
|2 G:(DE-HGF)POF3-100
|3 G:(DE-HGF)POF3
|4 G:(DE-HGF)POF
|a DE-HGF
|b Energie
|l Kernfusion
|v Plasma-Wall-Interaction
|x 0
913 1 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|3 G:(DE-HGF)POF3
|4 G:(DE-HGF)POF
|a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|v Computational Science and Mathematical Methods
|x 1
914 1 _ |y 2017
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0430
|2 StatID
|a National-Konsortium
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21