000838179 001__ 838179
000838179 005__ 20240712112852.0
000838179 0247_ $$2doi$$a10.1016/j.apenergy.2018.09.106
000838179 0247_ $$2ISSN$$a0306-2619
000838179 0247_ $$2ISSN$$a1872-9118
000838179 0247_ $$2WOS$$aWOS:000452345400057
000838179 037__ $$aFZJ-2017-06853
000838179 082__ $$a620
000838179 1001_ $$0P:(DE-HGF)0$$aBongartz, Dominik$$b0
000838179 245__ $$aComparison of light-duty transportation fuels produced from renewable hydrogen and green carbon dioxide
000838179 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000838179 3367_ $$2DRIVER$$aarticle
000838179 3367_ $$2DataCite$$aOutput Types/Journal article
000838179 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1539668930_21384
000838179 3367_ $$2BibTeX$$aARTICLE
000838179 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838179 3367_ $$00$$2EndNote$$aJournal Article
000838179 520__ $$aHydrogen (H2) production through water electrolysis is widely discussed as a means of storing renewable electricity in chemical bonds. Hydrogen can be used for transportation in fuel cell vehicles, but it can also be reacted with carbon dioxide (CO2) to form other fuels. While many concepts have been proposed, detailed comparisons of different pathways are still scarce. Herein, we present a technical, environmental, and economic comparison of direct H2 use in fuel cells, and production of methane, methanol, and dimethyl ether (DME) for use in internal combustion engines for light-duty vehicle applications. The scenario considered uses renewable electricity for water electrolysis, and CO2 which is supplied continuously from biogas upgrading. All four fuels enable significant reductions (79–93%) in well-to-wheel greenhouse gas emissions as well as pollutant formation compared to fossil fuels, but they require very cheap H2 to be competitive to fossil fuels, confirming intuitive expectations. While direct use of H2 has obvious advantages (no conversion losses, high efficiency of fuel cells compared to internal combustion engines) in terms of overall electricity consumption, emissions, and fuel cost, its drawbacks compared to the other fuels are the need for an H2 infrastructure, the high fueling pressure, and lower driving range. Among the three combustion engine fuels, DME has the lowest fuel cost and electricity consumption per distance driven because of the more efficient use of H2 in its production, as well as the highest volumetric energy density, while methane has slightly lower greenhouse gas emissions. Cost and energy demand are dominated by H2 supply, meaning that integrated solutions could be more attractive than separate electrolysis and fuel production.
000838179 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000838179 588__ $$aDataset connected to CrossRef
000838179 7001_ $$0P:(DE-HGF)0$$aDoré, Larissa$$b1
000838179 7001_ $$0P:(DE-HGF)0$$aEichler, Katharina$$b2
000838179 7001_ $$0P:(DE-Juel1)129852$$aGrube, Thomas$$b3
000838179 7001_ $$0P:(DE-HGF)0$$aHeuser, Benedikt$$b4
000838179 7001_ $$0P:(DE-HGF)0$$aHombach, Laura E.$$b5
000838179 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b6
000838179 7001_ $$0P:(DE-HGF)0$$aPischinger, Stefan$$b7
000838179 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b8
000838179 7001_ $$0P:(DE-HGF)0$$aWalther, Grit$$b9
000838179 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b10$$eCorresponding author
000838179 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2018.09.106$$gVol. 231, p. 757 - 767$$p757 - 767$$tApplied energy$$v231$$x0306-2619$$y2018
000838179 8564_ $$uhttps://juser.fz-juelich.de/record/838179/files/1-s2.0-S0306261918314272-main.pdf$$yRestricted
000838179 8564_ $$uhttps://juser.fz-juelich.de/record/838179/files/1-s2.0-S0306261918314272-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838179 909CO $$ooai:juser.fz-juelich.de:838179$$pVDB
000838179 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000838179 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000838179 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000838179 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129852$$aForschungszentrum Jülich$$b3$$kFZJ
000838179 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b4$$kRWTH
000838179 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b5$$kRWTH
000838179 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b6$$kFZJ
000838179 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b7$$kRWTH
000838179 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b8$$kFZJ
000838179 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b8$$kRWTH
000838179 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b9$$kRWTH
000838179 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b10$$kFZJ
000838179 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b10$$kRWTH
000838179 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000838179 9141_ $$y2018
000838179 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2015
000838179 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838179 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838179 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838179 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000838179 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000838179 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838179 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838179 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838179 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838179 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000838179 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2015
000838179 920__ $$lyes
000838179 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000838179 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000838179 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x2
000838179 980__ $$ajournal
000838179 980__ $$aVDB
000838179 980__ $$aI:(DE-Juel1)IEK-3-20101013
000838179 980__ $$aI:(DE-82)080011_20140620
000838179 980__ $$aI:(DE-Juel1)IEK-10-20170217
000838179 980__ $$aUNRESTRICTED
000838179 981__ $$aI:(DE-Juel1)ICE-2-20101013
000838179 981__ $$aI:(DE-Juel1)ICE-1-20170217
000838179 981__ $$aI:(DE-Juel1)ICE-1-20170217