000838181 001__ 838181
000838181 005__ 20240711101539.0
000838181 0247_ $$2doi$$a10.1016/j.ijhydene.2017.03.081
000838181 0247_ $$2ISSN$$a0360-3199
000838181 0247_ $$2ISSN$$a1879-3487
000838181 0247_ $$2WOS$$aWOS:000402444500009
000838181 037__ $$aFZJ-2017-06855
000838181 041__ $$aEnglish
000838181 082__ $$a660
000838181 1001_ $$00000-0003-4430-4682$$aGuandalini, G.$$b0$$eCorresponding author
000838181 245__ $$aLong-term power-to-gas potential from wind and solar power: A country analysis for Italy
000838181 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000838181 3367_ $$2DRIVER$$aarticle
000838181 3367_ $$2DataCite$$aOutput Types/Journal article
000838181 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1507205982_26353
000838181 3367_ $$2BibTeX$$aARTICLE
000838181 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838181 3367_ $$00$$2EndNote$$aJournal Article
000838181 520__ $$aChallenges related to variability of renewable energy sources (RES) recently arose in many countries and several solutions based on energy storage were proposed; among them, a promising option is Power-to-Gas (P2G), able to recover excess and unbalanced electrical energy. In this work, an assessment of long-term P2G potential is performed on a country scale, based on the analysis of electrical system historical data series, rescaled in order to consider the evolution of load and installed wind and solar capacity. In a long-term perspective, it is assumed the complete exploitation of the technical potential of the RES, which represents an upper deployment boundary with current technology. Once satisfied the electric load, residual energy to the P2G system and hydrogen production are calculated on a hourly basis; P2G installed capacity is a consequence of the assumed target on minimum operation on a yearly basis. The Italian case is analyzed, evidencing that the recovered excess energy from RES could substitute nearly 5% of current natural gas consumption or about 7% of national fuel consumption when used for hydrogen mobility. A range of options and a sensitivity analysis on assumptions is presented, showing scenarios with up to 200 GW of installed RES and a 50% additional load with respect to current one. In addition, the extension of the model to a zonal grid structure evidences the impact of transmission lines saturation that may increase gas production up to 50%. Results are compared with the German case, considered in a previous work, evidencing differences due to the diverse energy production mix.
000838181 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000838181 588__ $$aDataset connected to CrossRef
000838181 7001_ $$0P:(DE-Juel1)156460$$aRobinius, M.$$b1
000838181 7001_ $$0P:(DE-Juel1)129852$$aGrube, T.$$b2
000838181 7001_ $$0P:(DE-Juel1)129852$$aCampanari, S.$$b3
000838181 7001_ $$0P:(DE-Juel1)129928$$aStolten, D.$$b4
000838181 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2017.03.081$$gVol. 42, no. 19, p. 13389 - 13406$$n19$$p13389 - 13406$$tInternational journal of hydrogen energy$$v42$$x0360-3199$$y2017
000838181 8564_ $$uhttps://juser.fz-juelich.de/record/838181/files/1-s2.0-S0360319917310054-main%281%29.pdf$$yRestricted
000838181 8564_ $$uhttps://juser.fz-juelich.de/record/838181/files/1-s2.0-S0360319917310054-main%281%29.gif?subformat=icon$$xicon$$yRestricted
000838181 8564_ $$uhttps://juser.fz-juelich.de/record/838181/files/1-s2.0-S0360319917310054-main%281%29.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838181 8564_ $$uhttps://juser.fz-juelich.de/record/838181/files/1-s2.0-S0360319917310054-main%281%29.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838181 8564_ $$uhttps://juser.fz-juelich.de/record/838181/files/1-s2.0-S0360319917310054-main%281%29.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838181 8564_ $$uhttps://juser.fz-juelich.de/record/838181/files/1-s2.0-S0360319917310054-main%281%29.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838181 909CO $$ooai:juser.fz-juelich.de:838181$$pVDB
000838181 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b1$$kFZJ
000838181 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129852$$aForschungszentrum Jülich$$b2$$kFZJ
000838181 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129852$$aForschungszentrum Jülich$$b3$$kFZJ
000838181 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b4$$kFZJ
000838181 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000838181 9141_ $$y2017
000838181 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2015
000838181 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838181 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838181 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838181 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000838181 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000838181 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838181 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838181 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838181 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838181 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000838181 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000838181 920__ $$lyes
000838181 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000838181 980__ $$ajournal
000838181 980__ $$aVDB
000838181 980__ $$aI:(DE-Juel1)IEK-3-20101013
000838181 980__ $$aUNRESTRICTED
000838181 981__ $$aI:(DE-Juel1)ICE-2-20101013