001     838181
005     20240711101539.0
024 7 _ |a 10.1016/j.ijhydene.2017.03.081
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a WOS:000402444500009
|2 WOS
037 _ _ |a FZJ-2017-06855
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Guandalini, G.
|0 0000-0003-4430-4682
|b 0
|e Corresponding author
245 _ _ |a Long-term power-to-gas potential from wind and solar power: A country analysis for Italy
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1507205982_26353
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Challenges related to variability of renewable energy sources (RES) recently arose in many countries and several solutions based on energy storage were proposed; among them, a promising option is Power-to-Gas (P2G), able to recover excess and unbalanced electrical energy. In this work, an assessment of long-term P2G potential is performed on a country scale, based on the analysis of electrical system historical data series, rescaled in order to consider the evolution of load and installed wind and solar capacity. In a long-term perspective, it is assumed the complete exploitation of the technical potential of the RES, which represents an upper deployment boundary with current technology. Once satisfied the electric load, residual energy to the P2G system and hydrogen production are calculated on a hourly basis; P2G installed capacity is a consequence of the assumed target on minimum operation on a yearly basis. The Italian case is analyzed, evidencing that the recovered excess energy from RES could substitute nearly 5% of current natural gas consumption or about 7% of national fuel consumption when used for hydrogen mobility. A range of options and a sensitivity analysis on assumptions is presented, showing scenarios with up to 200 GW of installed RES and a 50% additional load with respect to current one. In addition, the extension of the model to a zonal grid structure evidences the impact of transmission lines saturation that may increase gas production up to 50%. Results are compared with the German case, considered in a previous work, evidencing differences due to the diverse energy production mix.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Robinius, M.
|0 P:(DE-Juel1)156460
|b 1
700 1 _ |a Grube, T.
|0 P:(DE-Juel1)129852
|b 2
700 1 _ |a Campanari, S.
|0 P:(DE-Juel1)129852
|b 3
700 1 _ |a Stolten, D.
|0 P:(DE-Juel1)129928
|b 4
773 _ _ |a 10.1016/j.ijhydene.2017.03.081
|g Vol. 42, no. 19, p. 13389 - 13406
|0 PERI:(DE-600)1484487-4
|n 19
|p 13389 - 13406
|t International journal of hydrogen energy
|v 42
|y 2017
|x 0360-3199
856 4 _ |u https://juser.fz-juelich.de/record/838181/files/1-s2.0-S0360319917310054-main%281%29.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838181/files/1-s2.0-S0360319917310054-main%281%29.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838181/files/1-s2.0-S0360319917310054-main%281%29.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838181/files/1-s2.0-S0360319917310054-main%281%29.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838181/files/1-s2.0-S0360319917310054-main%281%29.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838181/files/1-s2.0-S0360319917310054-main%281%29.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:838181
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156460
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129852
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129852
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21