001     838182
005     20210129231514.0
024 7 _ |a 10.1007/s11249-017-0900-2
|2 doi
024 7 _ |a 1023-8883
|2 ISSN
024 7 _ |a 1573-2711
|2 ISSN
024 7 _ |a WOS:000411059900003
|2 WOS
024 7 _ |a altmetric:24036054
|2 altmetric
037 _ _ |a FZJ-2017-06856
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a Müser, Martin
|0 P:(DE-Juel1)144442
|b 0
|e Corresponding author
245 _ _ |a Meeting the Contact-Mechanics Challenge
260 _ _ |a Cham
|c 2017
|b Springer International Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1507206203_26338
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper summarizes the submissions to a recently announced contact-mechanics modeling challenge. The task was to solve a typical, albeit mathematically fully defined problem on the adhesion between nominally flat surfaces. The surface topography of the rough, rigid substrate, the elastic properties of the indenter, as well as the short-range adhesion between indenter and substrate, were specified so that diverse quantities of interest, e.g., the distribution of interfacial stresses at a given load or the mean gap as a function of load, could be computed and compared to a reference solution. Many different solution strategies were pursued, ranging from traditional asperity-based models via Persson theory and brute-force computational approaches, to real-laboratory experiments and all-atom molecular dynamics simulations of a model, in which the original assignment was scaled down to the atomistic scale. While each submission contained satisfying answers for at least a subset of the posed questions, efficiency, versatility, and accuracy differed between methods, the more precise methods being, in general, computationally more complex. The aim of this paper is to provide both theorists and experimentalists with benchmarks to decide which method is the most appropriate for a particular application and to gauge the errors associated with each one.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a 141 - Controlling Electron Charge-Based Phenomena (POF3-141)
|0 G:(DE-HGF)POF3-141
|c POF3-141
|f POF III
|x 1
536 _ _ |a Forschergruppe Müser (hkf1_20110501)
|0 G:(DE-Juel1)hkf1_20110501
|c hkf1_20110501
|f Forschergruppe Müser
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Dapp, Wolfgang
|0 P:(DE-Juel1)145207
|b 1
700 1 _ |a Bugnicourt, Romain
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sainsot, Philippe
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lesaffre, Nicolas
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lubrecht, Ton A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Persson, Bo
|0 P:(DE-Juel1)130885
|b 6
|u fzj
700 1 _ |a Harris, Kathryn
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Bennett, Alexander
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Schulze, Kyle
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Rohde, Sean
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Ifju, Peter
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Sawyer, W. Gregory
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Angelini, Thomas
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Ashtari Esfahani, Hossein
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Kadkhodaei, Mahmoud
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Akbarzadeh, Saleh
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Wu, Jiunn-Jong
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Vorlaufer, Georg
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Vernes, András
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Solhjoo, Soheil
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Vakis, Antonis I.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Jackson, Robert L.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Xu, Yang
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Streator, Jeffrey
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Rostami, Amir
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Dini, Daniele
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Medina, Simon
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Carbone, Giuseppe
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Bottiglione, Francesco
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Afferrante, Luciano
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Monti, Joseph
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Pastewka, Lars
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Robbins, Mark O.
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Greenwood, James A.
|0 P:(DE-HGF)0
|b 34
773 _ _ |a 10.1007/s11249-017-0900-2
|g Vol. 65, no. 4, p. 118
|0 PERI:(DE-600)2015908-0
|n 4
|p 118
|t Tribology letters
|v 65
|y 2017
|x 1573-2711
856 4 _ |u https://juser.fz-juelich.de/record/838182/files/s11249-017-0900-2.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838182/files/s11249-017-0900-2.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838182/files/s11249-017-0900-2.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838182/files/s11249-017-0900-2.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838182/files/s11249-017-0900-2.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838182/files/s11249-017-0900-2.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:838182
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130885
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-141
|2 G:(DE-HGF)POF3-100
|v Controlling Electron Charge-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b TRIBOL LETT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 2
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21