000838187 001__ 838187
000838187 005__ 20240711101454.0
000838187 0247_ $$2doi$$a10.1016/j.ijhydene.2018.01.168
000838187 0247_ $$2ISSN$$a0360-3199
000838187 0247_ $$2ISSN$$a1879-3487
000838187 0247_ $$2WOS$$aWOS:000428823900031
000838187 037__ $$aFZJ-2017-06861
000838187 082__ $$a660
000838187 1001_ $$0P:(DE-Juel1)164480$$aYu, Junliang$$b0$$eCorresponding author
000838187 245__ $$aApparent Contact Angles of Liquid Water Droplet Breaking through a Gas Diffusion Layer of Polymer Electrolyte Membrane Fuel Cell
000838187 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000838187 3367_ $$2DRIVER$$aarticle
000838187 3367_ $$2DataCite$$aOutput Types/Journal article
000838187 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552650411_21967
000838187 3367_ $$2BibTeX$$aARTICLE
000838187 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838187 3367_ $$00$$2EndNote$$aJournal Article
000838187 520__ $$aThe lattice Boltzmann method is used to simulate the three-dimensional dynamic process of liquid water breaking through the gas diffusion layer (GDL) in the polymer electrolyte membrane fuel cell. An accurate method is introduced to analyze asymmetric droplet shape. Ten micro-structures of Toray GDL were built based on a stochastic geometry model. It was found that asymmetric droplets are produced on the GDL surfaces. Their local apparent contact angles vary with different view angles and geometries. They are different to the idealized contact angles by symmetric simplification. It was concluded that the apparent contact angles are influenced by GDL structures and view angles. This information can help to bridge the gap between mesoscale and cell-scale simulations in the field of fuel cell simulation.
000838187 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000838187 536__ $$0G:(DE-Juel1)jiek30_20120501$$aStochastic Aspects of Transport Processes in Gas Diffusion Layers of HT-PEFCs (jiek30_20120501)$$cjiek30_20120501$$fStochastic Aspects of Transport Processes in Gas Diffusion Layers of HT-PEFCs$$x1
000838187 588__ $$aDataset connected to CrossRef
000838187 7001_ $$0P:(DE-Juel1)5106$$aFroning, Dieter$$b1
000838187 7001_ $$0P:(DE-Juel1)6697$$aReimer, Uwe$$b2
000838187 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b3
000838187 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2018.01.168$$gVol. 43, no. 12, p. 6318 - 6330$$n12$$p6318 - 6330$$tInternational journal of hydrogen energy$$v43$$x0360-3199$$y2018
000838187 8564_ $$uhttps://juser.fz-juelich.de/record/838187/files/1-s2.0-S0360319918303112-main.pdf$$yRestricted
000838187 8564_ $$uhttps://juser.fz-juelich.de/record/838187/files/1-s2.0-S0360319918303112-main.gif?subformat=icon$$xicon$$yRestricted
000838187 8564_ $$uhttps://juser.fz-juelich.de/record/838187/files/1-s2.0-S0360319918303112-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838187 8564_ $$uhttps://juser.fz-juelich.de/record/838187/files/1-s2.0-S0360319918303112-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838187 8564_ $$uhttps://juser.fz-juelich.de/record/838187/files/1-s2.0-S0360319918303112-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838187 8564_ $$uhttps://juser.fz-juelich.de/record/838187/files/1-s2.0-S0360319918303112-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838187 909CO $$ooai:juser.fz-juelich.de:838187$$pVDB
000838187 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164480$$aForschungszentrum Jülich$$b0$$kFZJ
000838187 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5106$$aForschungszentrum Jülich$$b1$$kFZJ
000838187 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6697$$aForschungszentrum Jülich$$b2$$kFZJ
000838187 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b3$$kFZJ
000838187 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b3$$kRWTH
000838187 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000838187 9141_ $$y2018
000838187 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2015
000838187 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838187 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838187 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838187 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000838187 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000838187 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838187 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838187 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838187 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838187 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000838187 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000838187 920__ $$lyes
000838187 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000838187 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000838187 980__ $$ajournal
000838187 980__ $$aVDB
000838187 980__ $$aI:(DE-Juel1)IEK-3-20101013
000838187 980__ $$aI:(DE-82)080012_20140620
000838187 980__ $$aUNRESTRICTED
000838187 981__ $$aI:(DE-Juel1)ICE-2-20101013