000838214 001__ 838214
000838214 005__ 20240610120758.0
000838214 0247_ $$2doi$$a10.1038/s41467-017-01462-y
000838214 0247_ $$2Handle$$a2128/15888
000838214 0247_ $$2pmid$$apmid:29123094
000838214 0247_ $$2WOS$$aWOS:000414869900001
000838214 0247_ $$2altmetric$$aaltmetric:28669139
000838214 037__ $$aFZJ-2017-06876
000838214 041__ $$aEnglish
000838214 082__ $$a500
000838214 1001_ $$0P:(DE-Juel1)130629$$aElgeti, Jens$$b0$$eCorresponding author
000838214 245__ $$aHuman sperm steer with second harmics of the flagellar beat
000838214 260__ $$aLondon$$bNature Publishing Group$$c2017
000838214 3367_ $$2DRIVER$$aarticle
000838214 3367_ $$2DataCite$$aOutput Types/Journal article
000838214 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510750592_26907
000838214 3367_ $$2BibTeX$$aARTICLE
000838214 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838214 3367_ $$00$$2EndNote$$aJournal Article
000838214 520__ $$aSperm are propelled by bending waves traveling along their flagellum. For steering in gradients of sensory cues, sperm adjust the flagellar waveform. Symmetric and asymmetric waveforms result in straight and curved swimming paths, respectively. Two mechanisms causing spatially asymmetric waveforms have been proposed: an average flagellar curvature and buckling. We image flagella of human sperm tethered with the head to a surface. The waveform is characterized by a fundamental beat frequency and its second harmonic. The superposition of harmonics breaks the beat symmetry temporally rather than spatially. As a result, sperm rotate around the tethering point. The rotation velocity is determined by the second-harmonic amplitude and phase. Stimulation with the female sex hormone progesterone enhances the second-harmonic contribution and, thereby, modulates sperm rotation. Higher beat frequency components exist in other flagellated cells; therefore, this steering mechanism might be widespread and could inspire the design of synthetic microswimmers.
000838214 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000838214 588__ $$aDataset connected to CrossRef
000838214 7001_ $$0P:(DE-Juel1)145642$$aSaggiorato, Guglielmo$$b1
000838214 7001_ $$0P:(DE-HGF)0$$aAlvarez, Luis$$b2$$eCorresponding author
000838214 7001_ $$0P:(DE-HGF)0$$aJikeli, Jan F.$$b3
000838214 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b4
000838214 7001_ $$0P:(DE-HGF)0$$aKaupp, Benjamin U.$$b5
000838214 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-017-01462-y$$gVol. 8, no. 1, p. 1415$$n1$$p1415$$tNature Communications$$v8$$x2041-1723$$y2017
000838214 8564_ $$uhttps://juser.fz-juelich.de/record/838214/files/s41467-017-01462-y.pdf$$yOpenAccess
000838214 8564_ $$uhttps://juser.fz-juelich.de/record/838214/files/s41467-017-01462-y.gif?subformat=icon$$xicon$$yOpenAccess
000838214 8564_ $$uhttps://juser.fz-juelich.de/record/838214/files/s41467-017-01462-y.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000838214 8564_ $$uhttps://juser.fz-juelich.de/record/838214/files/s41467-017-01462-y.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000838214 8564_ $$uhttps://juser.fz-juelich.de/record/838214/files/s41467-017-01462-y.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000838214 8564_ $$uhttps://juser.fz-juelich.de/record/838214/files/s41467-017-01462-y.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000838214 8767_ $$82676079187$$92017-09-25$$d2017-10-06$$eAPC$$jZahlung erfolgt
000838214 909CO $$ooai:juser.fz-juelich.de:838214$$pVDB$$pdriver$$pOpenAPC$$pdnbdelivery$$popenCost$$popen_access$$popenaire
000838214 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130629$$aForschungszentrum Jülich$$b0$$kFZJ
000838214 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b4$$kFZJ
000838214 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000838214 9141_ $$y2017
000838214 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838214 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000838214 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000838214 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000838214 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2015
000838214 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT COMMUN : 2015
000838214 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000838214 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000838214 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838214 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838214 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838214 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000838214 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000838214 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838214 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000838214 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838214 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000838214 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838214 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000838214 9801_ $$aAPC
000838214 9801_ $$aFullTexts
000838214 980__ $$ajournal
000838214 980__ $$aVDB
000838214 980__ $$aUNRESTRICTED
000838214 980__ $$aI:(DE-Juel1)ICS-2-20110106
000838214 980__ $$aAPC
000838214 981__ $$aI:(DE-Juel1)IBI-5-20200312
000838214 981__ $$aI:(DE-Juel1)IAS-2-20090406