000838224 001__ 838224
000838224 005__ 20230426083152.0
000838224 0247_ $$2doi$$a10.1103/PhysRevB.96.144401
000838224 0247_ $$2ISSN$$a0163-1829
000838224 0247_ $$2ISSN$$a0556-2805
000838224 0247_ $$2ISSN$$a1094-1622
000838224 0247_ $$2ISSN$$a1095-3795
000838224 0247_ $$2ISSN$$a1098-0121
000838224 0247_ $$2ISSN$$a1550-235X
000838224 0247_ $$2ISSN$$a2469-9950
000838224 0247_ $$2ISSN$$a2469-9969
000838224 0247_ $$2Handle$$a2128/15558
000838224 0247_ $$2WOS$$aWOS:000412029200003
000838224 0247_ $$2altmetric$$aaltmetric:22209292
000838224 037__ $$aFZJ-2017-06886
000838224 082__ $$a530
000838224 1001_ $$0P:(DE-Juel1)162225$$aGuimaraes, Filipe$$b0$$eCorresponding author$$ufzj
000838224 245__ $$aEngineering elliptical spin-excitations by complex anisotropy fields in Fe adatoms and dimers on Cu(111)
000838224 260__ $$aWoodbury, NY$$bInst.$$c2017
000838224 3367_ $$2DRIVER$$aarticle
000838224 3367_ $$2DataCite$$aOutput Types/Journal article
000838224 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1507531806_21548
000838224 3367_ $$2BibTeX$$aARTICLE
000838224 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838224 3367_ $$00$$2EndNote$$aJournal Article
000838224 520__ $$aWe investigate the dynamics of Fe adatoms and dimers deposited on the Cu(111) metallic surface in the presence of spin-orbit coupling, within time-dependent density functional theory. The ab initio results provide material-dependent parameters that can be used in semiclassical approaches, which are used for insightful interpretations of the excitation modes. By manipulating the surroundings of the magnetic elements, we show that elliptical precessional motion may be induced through the modification of the magnetic anisotropy energy. We also demonstrate how different kinds of spin precession are realized, considering the symmetry of the magnetic anisotropy energy, the ferro- or antiferromagnetic nature of the exchange coupling between the impurities, and the strength of the magnetic damping. In particular, the normal modes of a dimer depend on the initial magnetic configuration, changing drastically by going from a ferromagnetic metastable state to the antiferromagnetic ground state. By taking into account the effect of the damping into their resonant frequencies, we reveal that an important contribution arises for strongly biaxial systems and specially for the antiferromagnetic dimers with large exchange couplings. Counterintuitively, our results indicate that the magnetic damping influences the quantum fluctuations by decreasing the zero-point energy of the system.
000838224 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000838224 542__ $$2Crossref$$i2017-10-02$$uhttps://link.aps.org/licenses/aps-default-license
000838224 588__ $$aDataset connected to CrossRef
000838224 7001_ $$0P:(DE-Juel1)145395$$ados Santos Dias, Manuel$$b1$$ufzj
000838224 7001_ $$0P:(DE-Juel1)141736$$aSchweflinghaus, Benedikt$$b2
000838224 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b3$$ufzj
000838224 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.96.144401$$bAmerican Physical Society (APS)$$d2017-10-02$$n14$$p144401$$tPhysical Review B$$v96$$x2469-9950$$y2017
000838224 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.96.144401$$gVol. 96, no. 14, p. 144401$$n14$$p144401$$tPhysical review / B$$v96$$x2469-9950$$y2017
000838224 8564_ $$uhttps://juser.fz-juelich.de/record/838224/files/PhysRevB.96.144401.pdf$$yOpenAccess
000838224 8564_ $$uhttps://juser.fz-juelich.de/record/838224/files/PhysRevB.96.144401.gif?subformat=icon$$xicon$$yOpenAccess
000838224 8564_ $$uhttps://juser.fz-juelich.de/record/838224/files/PhysRevB.96.144401.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000838224 8564_ $$uhttps://juser.fz-juelich.de/record/838224/files/PhysRevB.96.144401.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000838224 8564_ $$uhttps://juser.fz-juelich.de/record/838224/files/PhysRevB.96.144401.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000838224 8564_ $$uhttps://juser.fz-juelich.de/record/838224/files/PhysRevB.96.144401.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000838224 909CO $$ooai:juser.fz-juelich.de:838224$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000838224 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162225$$aForschungszentrum Jülich$$b0$$kFZJ
000838224 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145395$$aForschungszentrum Jülich$$b1$$kFZJ
000838224 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b3$$kFZJ
000838224 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000838224 9141_ $$y2017
000838224 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838224 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000838224 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000838224 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2015
000838224 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838224 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838224 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838224 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000838224 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000838224 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000838224 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000838224 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838224 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838224 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000838224 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000838224 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000838224 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000838224 980__ $$ajournal
000838224 980__ $$aVDB
000838224 980__ $$aUNRESTRICTED
000838224 980__ $$aI:(DE-Juel1)IAS-1-20090406
000838224 980__ $$aI:(DE-Juel1)PGI-1-20110106
000838224 980__ $$aI:(DE-82)080009_20140620
000838224 980__ $$aI:(DE-82)080012_20140620
000838224 9801_ $$aFullTexts
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.81.1495
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.progsurf.2017.01.001
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1201725
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nnano.2017.18
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aad9898
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.127203
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys1514
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.118.087601
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature21371
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.119.017203
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1146110
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1101077
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl302250n
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.075405
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.037205
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.212401
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1228519
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat4018
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms9536
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.114.106807
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.256802
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.103.050801
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl901066a
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/12/8/083028
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.187205
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.157204
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1109/TMAG.2004.836740
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.88.117601
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.153408
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3587173
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.217602
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.83.1260
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.86.694
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.85.329
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.157206
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.020406
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nnano.2016.18
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.116.207603
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.220410
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.55.2850
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.035109
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.235439
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1191688
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nnano.2013.264
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1507474112
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/14/11/304
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1139/p80-159
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.52.11502
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.68.205410
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.085430
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.susc.2014.07.014
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.104420
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.057204
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.32.2115
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0305-4608/14/7/007
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0304-8853(03)00206-3
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.90.087205
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/16/41/023
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/61/7/001
000838224 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.6b01344