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Gate-based quantum computing
A quantum computer contains a set of two-level systems 
called qubits. Each qubit can be a complex superposition 
of the computational states 0 and 1. In the gate-based 
model of quantum computing, gates transform the qubits 
at each step. Examples for single-qubit gates are:

Quantum circuits consist of sequences of quantum gates.

All measurements of the quantum system ultimately 
produce a bit string by projecting each qubit to 0 or 1.

Superconducting qubit architecture
The architecture of the simulated quantum computer is defined by the system Hamiltonian

Gate error metrics
Projection of the time-evolution operator () on the 
qubit subspace gives the matrix . Ideally, this matrix 
should be equal to the unitary quantum gate .

Average gate fidelity [4]

Diamond error rate [5]

Unitarity [6]

Conclusion: The gate metrics of the optimized pulses are nearly perfect and agree with experimental achievements [3]. However, in repeated applications or 
actual quantum circuits, the gates suffer from systematic errors. These can be observed in experiments [7,8]. Conceptually, the errors stem from the non-
computational states. Although the gate metrics reveal them, they cannot replace the information of how well and how often a certain gate may be used in a 
quantum circuit. As this information is most important to eventual users of gate-based quantum computers, it should be reported separately.

Simulation method

The CNOT gate is implemented in three different 
versions based on cross-resonance (CR) pulses [3].

The qubits are given by the lowest eigenstates of 
Cooper Pair Boxes (CPBs) in the transmon regime [1].

One way of coupling transmons is based on a trans-
mission line resonator, modeled as a harmonic oscillator.

Another way of coupling transmons is based on a 
capacitive electrostatic interaction.

Quantum gates are implemented 
by microwave voltage pulses.

The time-dependent Schrödinger 
equation (TDSE) 

is solved numerically using a 
Suzuki-Trotter product-formula 
algorithm [2] for the time-
evolution operator

The goal is to find a pulse () 

so that () implements a certain 
quantum gate on the qubits. We 
use the Nelder-Mead algorithm to 
optimize the parameters of the 
pulse.

A two-qubit gate such as the 
controlled-NOT (CNOT) is 
a conditional operation to 
entangle two qubits. 
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