Simulation of gate-based quantum computers with superconducting qubits

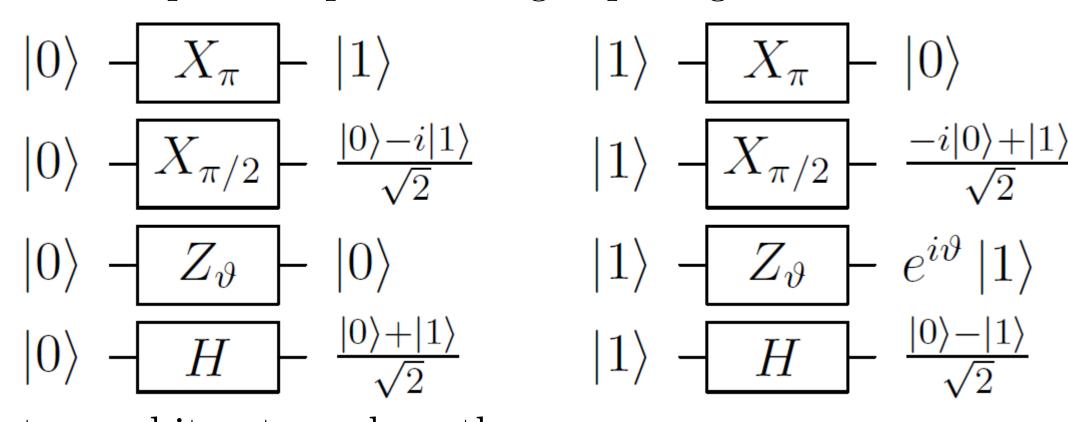
Dennis Willsch¹, Madita Nocon¹, Fengping Jin¹, Hans De Raedt², Kristel Michielsen^{1,3}

- Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich, Germany
- ² Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG Groningen, The Netherlands

³ RWTH Aachen University, D-52056 Aachen, Germany

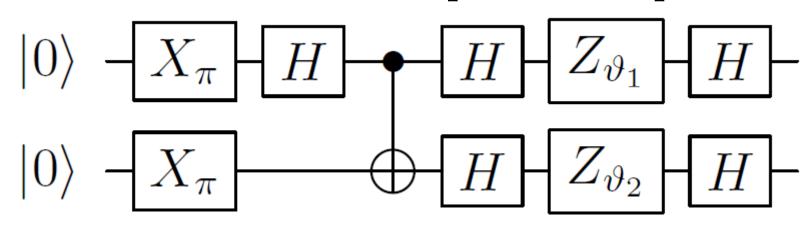
Gate-based quantum computing

A quantum computer contains a set of two-level systems called qubits. Each qubit can be a complex superposition of the computational states $|0\rangle$ and $|1\rangle$. In the gate-based model of quantum computing, gates transform the qubits at each step. Examples for single-qubit gates are:



A two-qubit gate such as the controlled-NOT (CNOT) is a conditional operation to entangle two qubits.

Quantum circuits consist of sequences of quantum gates.



All measurements of the quantum system ultimately produce a bit string by projecting each qubit to $|0\rangle$ or $|1\rangle$.

Superconducting qubit architecture

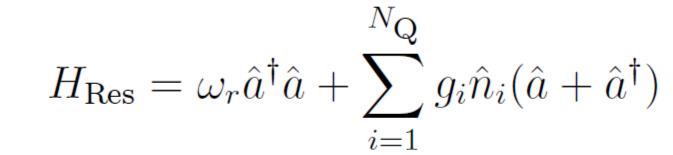
The architecture of the simulated quantum computer is defined by the system Hamiltonian

$$H = H_{\text{CPB}} + H_{\text{Res}} + H_{\text{CC}}$$

The qubits are given by the lowest eigenstates of Cooper Pair Boxes (CPBs) in the transmon regime [1].

$$H_{\text{CPB}} = \sum_{i=1}^{N_Q} \left[E_{Ci} (\hat{n}_i - n_{gi}(t))^2 - E_{Ji} \cos \hat{\varphi}_i \right]$$

One way of coupling transmons is based on a trans mission line resonator, modeled as a harmonic oscillator.



Another way of coupling transmons is based on a capacitive electrostatic interaction.

$$H_{\text{CC}} = \sum_{1 \le i < j \le N_Q} E_{Ci,Cj}(\hat{n}_i - n_{Ci,Cj}^L)(\hat{n}_j - n_{Ci,Cj}^R)$$

Quantum gates are implemented by microwave voltage pulses.

$$n_{gi}(t) = \sum_{j} \Omega_{ij}(t) \cos(\omega_{ij}t - \gamma_{ij})$$

3 [-]·	Transmon 1	
$\sum_{i=1}^{N_Q}$ a trans-	$E_{Ci}E_{Ji}$ $n_{gi}(t)$	
oscillator. Transmon a a		Transmon
$n_{Ci,Cj}^R$ Transmo	n	ransmon

Transmon	$E_{Ci}/2\pi$	$E_{Ji}/2\pi$	$\omega_i/2\pi$	$\omega_r/2\pi$	$g_i/2\pi$
1	1.204	13.349	5.350	7	0.07
2	1.204	12.292	5.120	7	0.07

Simulation method

(a) X simulation

The time-dependent Schrödinger equation (TDSE)

$$i\frac{\partial}{\partial t} |\Psi(t)\rangle = H(t) |\Psi(t)\rangle$$

is solved numerically using a Suzuki-Trotter product-formula algorithm [2] for the timeevolution operator

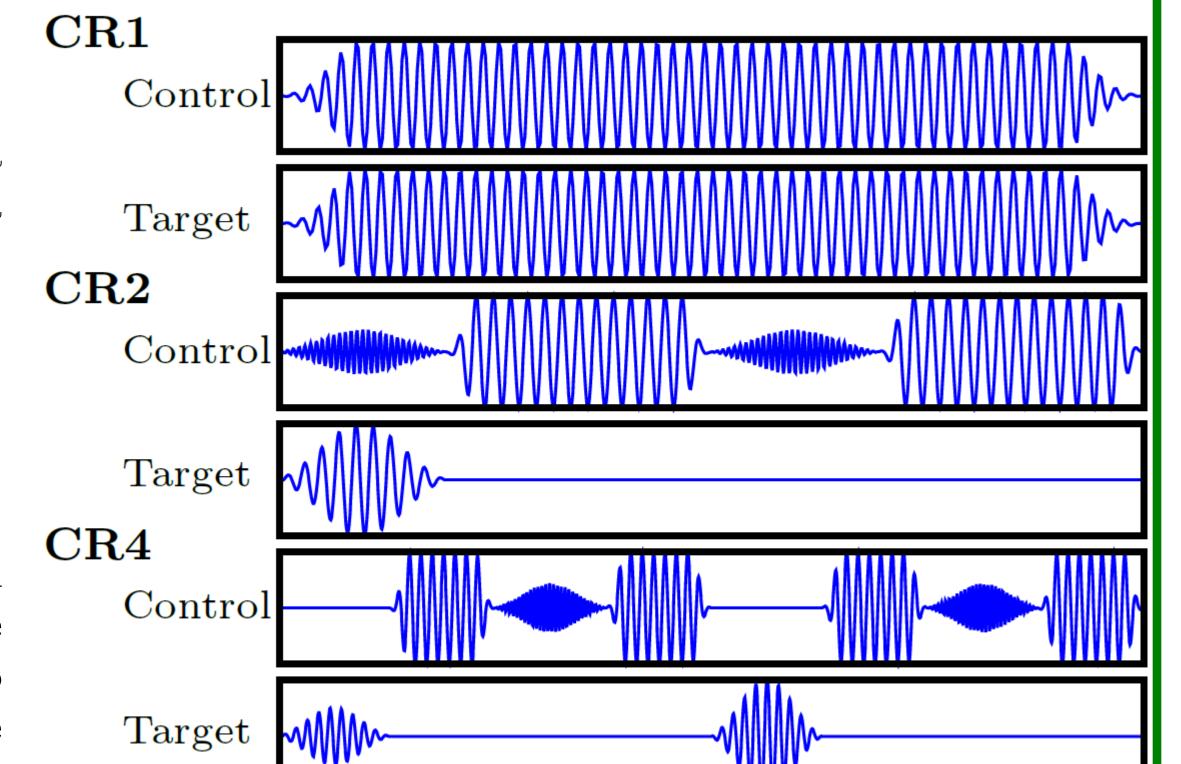
$$\mathcal{U}(\tau) = e^{-i\tau(H_1 + \dots + H_K)}$$

$$\approx e^{-i\tau H_1} \cdots e^{-i\tau H_K}$$

The goal is to find a pulse $n_{ai}(t)$ so that $\mathcal{U}(t)$ implements a certain quantum gate on the qubits. We use the Nelder-Mead algorithm to optimize the parameters of the pulse.

 F_{avg}

The CNOT gate is implemented in three different versions based on cross-resonance (CR) pulses [3].



(b) CR1 simulation

Gate error metrics

Projection of the time-evolution operator $\mathcal{U}(t)$ on the qubit subspace gives the matrix M. Ideally, this matrix should be equal to the unitary quantum gate U.

$$\mathcal{G}_{ac}(|\psi\rangle\langle\psi|) = M |\psi\rangle\langle\psi| M^{\dagger}$$
$$\mathcal{G}_{id}(|\psi\rangle\langle\psi|) = U |\psi\rangle\langle\psi| U^{\dagger}$$

Average gate fidelity [4]

$$F_{\text{avg}} = \int d|\psi\rangle \langle \psi| \mathcal{G}_{ac}(\mathcal{G}_{id}^{-1}(|\psi\rangle\langle\psi|)) |\psi\rangle$$

Diamond error rate [5]

$$\eta_{\Diamond} = \frac{1}{2} \left\| \mathcal{G}_{ac} \circ \mathcal{G}_{id}^{-1} - \mathbb{1} \right\|_{\Diamond}$$

(b) CR1 simulation

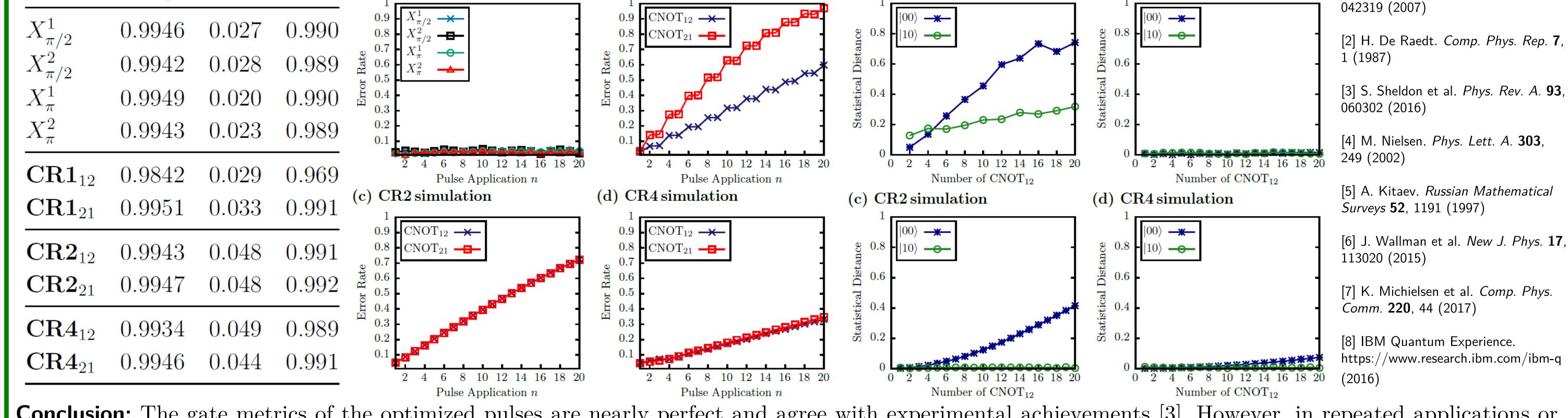
Unitarity [6]

(a) IBMQX (using CR2)

$$u = \frac{d}{d-1} \int d|\psi\rangle \operatorname{Tr} \left[\mathcal{G}'_{ac}(|\psi\rangle\langle\psi|)^{\dagger} \mathcal{G}'_{ac}(|\psi\rangle\langle\psi|) \right]$$

References:

[1] J. Koch et al. *Phys. Rev. A* **76**,



Simulation results

Conclusion: The gate metrics of the optimized pulses are nearly perfect and agree with experimental achievements [3]. However, in repeated applications or actual quantum circuits, the gates suffer from systematic errors. These can be observed in experiments [7,8]. Conceptually, the errors stem from the noncomputational states. Although the gate metrics reveal them, they cannot replace the information of how well and how often a certain gate may be used in a quantum circuit. As this information is most important to eventual users of gate-based quantum computers, it should be reported separately.

Gate