000838245 001__ 838245
000838245 005__ 20240711085618.0
000838245 0247_ $$2doi$$a10.1016/j.surfcoat.2016.12.062
000838245 0247_ $$2ISSN$$a0257-8972
000838245 0247_ $$2ISSN$$a1879-3347
000838245 0247_ $$2WOS$$aWOS:000402356100024
000838245 037__ $$aFZJ-2017-06900
000838245 082__ $$a620
000838245 1001_ $$0P:(DE-Juel1)169700$$aMahade, Satyapal$$b0$$eCorresponding author
000838245 245__ $$aFunctional performance of Gd 2 Zr 2 O 7 /YSZ multi-layered thermal barrier coatings deposited by suspension plasma spray
000838245 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017
000838245 3367_ $$2DRIVER$$aarticle
000838245 3367_ $$2DataCite$$aOutput Types/Journal article
000838245 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1507546791_21549
000838245 3367_ $$2BibTeX$$aARTICLE
000838245 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838245 3367_ $$00$$2EndNote$$aJournal Article
000838245 520__ $$a7–8 wt.% yttria stabilized zirconia (YSZ) is the standard ceramic top coat material used in gas turbines to insulate the underlying metallic substrate. However, at higher temperatures (> 1200 °C), phase stability and sintering becomes an issue for YSZ. At these temperatures, YSZ is also susceptible to CMAS (calcium magnesium alumino silicates) infiltration. New ceramic materials such as pyrochlores have thus been proposed due to their excellent properties such as lower thermal conductivity and better CMAS attack resistance compared to YSZ. However, pyrochlores have inferior thermo mechanical properties compared to YSZ. Therefore, double-layered TBCs with YSZ as the intermediate layer and pyrochlore as the top ceramic layer have been proposed. In this study, double layer TBC comprising gadolinium zirconate (GZ)/YSZ and triple layer TBC (GZdense/GZ/YSZ) comprising relatively denser GZ top layer on GZ/YSZ were deposited by suspension plasma spray. Also, single layer 8YSZ TBC was suspension plasma sprayed to compare its functional performance with the multi-layered TBCs. Cross sections and top surface morphology of as sprayed TBCs were analyzed by scanning electron microscopy (SEM). XRD analysis was done to identify phases formed in the top surface of as sprayed TBCs. Porosity measurements were made using water intrusion and image analysis methods. Thermal diffusivity of the as sprayed TBCs was measured using laser flash analysis and thermal conductivity of the TBCs was calculated. The multi-layered GZ/YSZ TBCs were shown to have lower thermal conductivity than the single layer YSZ. The as sprayed TBCs were also subjected to thermal cyclic testing at 1300 °C. The double and triple layer TBCs had a longer thermal cyclic life compared to YSZ. The thermo cycled samples were analyzed by SEM.
000838245 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000838245 588__ $$aDataset connected to CrossRef
000838245 7001_ $$0P:(DE-HGF)0$$aCurry, Nicholas$$b1
000838245 7001_ $$0P:(DE-HGF)0$$aBjörklund, Stefan$$b2
000838245 7001_ $$0P:(DE-HGF)0$$aMarkocsan, Nicolaie$$b3
000838245 7001_ $$0P:(DE-HGF)0$$aNylén, Per$$b4
000838245 7001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b5$$ufzj
000838245 773__ $$0PERI:(DE-600)1502240-7$$a10.1016/j.surfcoat.2016.12.062$$gVol. 318, p. 208 - 216$$p208 - 216$$tSurface and coatings technology$$v318$$x0257-8972$$y2017
000838245 8564_ $$uhttps://juser.fz-juelich.de/record/838245/files/1-s2.0-S0257897216313500-main.pdf$$yRestricted
000838245 8564_ $$uhttps://juser.fz-juelich.de/record/838245/files/1-s2.0-S0257897216313500-main.gif?subformat=icon$$xicon$$yRestricted
000838245 8564_ $$uhttps://juser.fz-juelich.de/record/838245/files/1-s2.0-S0257897216313500-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838245 8564_ $$uhttps://juser.fz-juelich.de/record/838245/files/1-s2.0-S0257897216313500-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838245 8564_ $$uhttps://juser.fz-juelich.de/record/838245/files/1-s2.0-S0257897216313500-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838245 8564_ $$uhttps://juser.fz-juelich.de/record/838245/files/1-s2.0-S0257897216313500-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838245 909CO $$ooai:juser.fz-juelich.de:838245$$pVDB
000838245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b5$$kFZJ
000838245 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000838245 9141_ $$y2017
000838245 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000838245 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838245 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSURF COAT TECH : 2015
000838245 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838245 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000838245 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000838245 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838245 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838245 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838245 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838245 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000838245 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000838245 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000838245 980__ $$ajournal
000838245 980__ $$aVDB
000838245 980__ $$aI:(DE-Juel1)IEK-1-20101013
000838245 980__ $$aUNRESTRICTED
000838245 981__ $$aI:(DE-Juel1)IMD-2-20101013