000838288 001__ 838288
000838288 005__ 20240711101459.0
000838288 0247_ $$2doi$$a10.1016/j.ijhydene.2017.11.115
000838288 0247_ $$2ISSN$$a0360-3199
000838288 0247_ $$2ISSN$$a1879-3487
000838288 0247_ $$2WOS$$aWOS:000424308500001
000838288 0247_ $$2altmetric$$aaltmetric:32011748
000838288 037__ $$aFZJ-2017-06931
000838288 082__ $$a660
000838288 1001_ $$0P:(DE-Juel1)171601$$aSaba, Sayed$$b0$$eCorresponding author
000838288 245__ $$aThe Investment Costs of Electrolysis - A Comparison of Cost Studies from the Past 30 Years
000838288 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000838288 3367_ $$2DRIVER$$aarticle
000838288 3367_ $$2DataCite$$aOutput Types/Journal article
000838288 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1515596037_4332
000838288 3367_ $$2BibTeX$$aARTICLE
000838288 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838288 3367_ $$00$$2EndNote$$aJournal Article
000838288 520__ $$aWater electrolysis is a promising technology for storing surplus energy from intermittent renewable energy sources in the form of hydrogen. The future investment costs of water electrolysis represent one key challenge for a hydrogen-based energy system. In this work, a literature review was conducted to evaluate the published data on investment costs and learning rates for PEM and alkaline electrolyzers from the 1990s until 2017 and the years beyond. The collected data are adjusted for inflation and specified in €2017 per kW-output using the higher heating value (HHV). R&D efforts have led to impressive cost reductions in the observed period, especially for PEM technology, while cost reductions for alkaline technology have also been decent. The overall spread of the cost estimations in the 1990s was in a range between 306 and 4748 €2017/kWHHV-Output. Today's estimations for future investment costs (through 2030) for both technologies are narrowed towards values of 397 and 955 €2017/kWHHV-Output. Higher automation, mass production, larger cell areas, market penetration and technology development will all have a further impact on the investment costs.
000838288 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000838288 588__ $$aDataset connected to CrossRef
000838288 7001_ $$0P:(DE-Juel1)129892$$aMüller, Martin$$b1
000838288 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b2
000838288 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b3
000838288 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2017.11.115$$gVol. 43, no. 3, p. 1209 - 1223$$n3$$p1209 - 1223$$tInternational journal of hydrogen energy$$v43$$x0360-3199$$y2018
000838288 8564_ $$uhttps://juser.fz-juelich.de/record/838288/files/1-s2.0-S0360319917344956-main.pdf$$yRestricted
000838288 8564_ $$uhttps://juser.fz-juelich.de/record/838288/files/1-s2.0-S0360319917344956-main.gif?subformat=icon$$xicon$$yRestricted
000838288 8564_ $$uhttps://juser.fz-juelich.de/record/838288/files/1-s2.0-S0360319917344956-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838288 8564_ $$uhttps://juser.fz-juelich.de/record/838288/files/1-s2.0-S0360319917344956-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838288 8564_ $$uhttps://juser.fz-juelich.de/record/838288/files/1-s2.0-S0360319917344956-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838288 8564_ $$uhttps://juser.fz-juelich.de/record/838288/files/1-s2.0-S0360319917344956-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838288 909CO $$ooai:juser.fz-juelich.de:838288$$pVDB
000838288 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171601$$aForschungszentrum Jülich$$b0$$kFZJ
000838288 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129892$$aForschungszentrum Jülich$$b1$$kFZJ
000838288 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b2$$kFZJ
000838288 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b3$$kFZJ
000838288 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000838288 9141_ $$y2018
000838288 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2015
000838288 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838288 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838288 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838288 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000838288 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000838288 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838288 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838288 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838288 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838288 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000838288 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000838288 920__ $$lyes
000838288 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000838288 980__ $$ajournal
000838288 980__ $$aVDB
000838288 980__ $$aI:(DE-Juel1)IEK-3-20101013
000838288 980__ $$aUNRESTRICTED
000838288 981__ $$aI:(DE-Juel1)ICE-2-20101013