000838289 001__ 838289
000838289 005__ 20240712113256.0
000838289 0247_ $$2doi$$a10.1016/j.ijhydene.2019.02.139
000838289 0247_ $$2Handle$$a2128/24111
000838289 0247_ $$2WOS$$aWOS:000466618300001
000838289 037__ $$aFZJ-2017-06932
000838289 082__ $$a620
000838289 1001_ $$0P:(DE-Juel1)129892$$aMüller, Martin$$b0$$eCorresponding author
000838289 245__ $$aWater management in membrane electrolysis and options for advanced plants
000838289 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000838289 3367_ $$2DRIVER$$aarticle
000838289 3367_ $$2DataCite$$aOutput Types/Journal article
000838289 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1580398593_18264
000838289 3367_ $$2BibTeX$$aARTICLE
000838289 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838289 3367_ $$00$$2EndNote$$aJournal Article
000838289 520__ $$aThe development of polymer electrolyte membrane electrolysis (PEMEL) is driven by increasing performance to decrease the costs of electrolysis systems. One option for increasing power density is decreasing the Ohmic losses within the cell. This can be enabled by using thinner membranes, although the disadvantage of thin membranes is their lower diffusion resistivity for water, hydrogen and oxygen what influences the efficiency and the operating conditions. In this paper the water transport and the Ohmic resistance of catalyst coated membranes with different thickness are analyzed. The disadvantage of high water permeability in thin membranes can be used to change the feed configuration in stacks and systems. It is possible to feed the electrolysis only from the cathode, which simplifies the mass transport (single phase) in the anode's porous transport layer and reducing stack and system dimensions, as well as costs.
000838289 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000838289 7001_ $$0P:(DE-Juel1)145276$$aCarmo, Marcelo$$b1
000838289 7001_ $$0P:(DE-Juel1)129851$$aGlüsen, Andreas$$b2
000838289 7001_ $$0P:(DE-Juel1)129857$$aHehemann, Michael$$b3
000838289 7001_ $$0P:(DE-Juel1)171601$$aSaba, Sayed$$b4$$ufzj
000838289 7001_ $$0P:(DE-Juel1)129951$$aZwaygardt, Walter$$b5
000838289 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b6
000838289 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2019.02.139$$n21$$p10147-10155$$tInternational journal of hydrogen energy$$v44$$x0360-3199$$y2019
000838289 8564_ $$uhttps://juser.fz-juelich.de/record/838289/files/2019%20IJHE%20M%C3%BCller%20Water%20management%20in%20membrane%20electrolysis%20and%20options%20for%20advanced%20plants-1.pdf$$yRestricted
000838289 8564_ $$uhttps://juser.fz-juelich.de/record/838289/files/2019%20IJHE%20M%C3%BCller%20Water%20management%20in%20membrane%20electrolysis%20and%20options%20for%20advanced%20plants-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838289 8564_ $$uhttps://juser.fz-juelich.de/record/838289/files/HE_25626_edit_report.pdf$$yPublished on 2019-03-16. Available in OpenAccess from 2021-03-16.
000838289 8564_ $$uhttps://juser.fz-juelich.de/record/838289/files/HE_25626_edit_report.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-03-16. Available in OpenAccess from 2021-03-16.
000838289 909CO $$ooai:juser.fz-juelich.de:838289$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000838289 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129892$$aForschungszentrum Jülich$$b0$$kFZJ
000838289 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145276$$aForschungszentrum Jülich$$b1$$kFZJ
000838289 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129851$$aForschungszentrum Jülich$$b2$$kFZJ
000838289 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129857$$aForschungszentrum Jülich$$b3$$kFZJ
000838289 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171601$$aForschungszentrum Jülich$$b4$$kFZJ
000838289 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129951$$aForschungszentrum Jülich$$b5$$kFZJ
000838289 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b6$$kFZJ
000838289 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b6$$kRWTH
000838289 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000838289 9141_ $$y2019
000838289 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838289 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000838289 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000838289 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000838289 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2017
000838289 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838289 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838289 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838289 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000838289 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000838289 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838289 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838289 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000838289 920__ $$lyes
000838289 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000838289 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x1
000838289 9801_ $$aFullTexts
000838289 980__ $$ajournal
000838289 980__ $$aVDB
000838289 980__ $$aUNRESTRICTED
000838289 980__ $$aI:(DE-Juel1)IEK-3-20101013
000838289 980__ $$aI:(DE-Juel1)IEK-14-20191129
000838289 981__ $$aI:(DE-Juel1)ICE-2-20101013
000838289 981__ $$aI:(DE-Juel1)IET-4-20191129
000838289 981__ $$aI:(DE-Juel1)IET-4-20191129