001     838289
005     20240712113256.0
024 7 _ |a 10.1016/j.ijhydene.2019.02.139
|2 doi
024 7 _ |a 2128/24111
|2 Handle
024 7 _ |a WOS:000466618300001
|2 WOS
037 _ _ |a FZJ-2017-06932
082 _ _ |a 620
100 1 _ |a Müller, Martin
|0 P:(DE-Juel1)129892
|b 0
|e Corresponding author
245 _ _ |a Water management in membrane electrolysis and options for advanced plants
260 _ _ |a New York, NY [u.a.]
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1580398593_18264
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The development of polymer electrolyte membrane electrolysis (PEMEL) is driven by increasing performance to decrease the costs of electrolysis systems. One option for increasing power density is decreasing the Ohmic losses within the cell. This can be enabled by using thinner membranes, although the disadvantage of thin membranes is their lower diffusion resistivity for water, hydrogen and oxygen what influences the efficiency and the operating conditions. In this paper the water transport and the Ohmic resistance of catalyst coated membranes with different thickness are analyzed. The disadvantage of high water permeability in thin membranes can be used to change the feed configuration in stacks and systems. It is possible to feed the electrolysis only from the cathode, which simplifies the mass transport (single phase) in the anode's porous transport layer and reducing stack and system dimensions, as well as costs.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
700 1 _ |a Carmo, Marcelo
|0 P:(DE-Juel1)145276
|b 1
700 1 _ |a Glüsen, Andreas
|0 P:(DE-Juel1)129851
|b 2
700 1 _ |a Hehemann, Michael
|0 P:(DE-Juel1)129857
|b 3
700 1 _ |a Saba, Sayed
|0 P:(DE-Juel1)171601
|b 4
|u fzj
700 1 _ |a Zwaygardt, Walter
|0 P:(DE-Juel1)129951
|b 5
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 6
773 _ _ |a 10.1016/j.ijhydene.2019.02.139
|0 PERI:(DE-600)1484487-4
|n 21
|p 10147-10155
|t International journal of hydrogen energy
|v 44
|y 2019
|x 0360-3199
856 4 _ |u https://juser.fz-juelich.de/record/838289/files/2019%20IJHE%20M%C3%BCller%20Water%20management%20in%20membrane%20electrolysis%20and%20options%20for%20advanced%20plants-1.pdf
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/838289/files/2019%20IJHE%20M%C3%BCller%20Water%20management%20in%20membrane%20electrolysis%20and%20options%20for%20advanced%20plants-1.pdf?subformat=pdfa
|y Restricted
856 4 _ |y Published on 2019-03-16. Available in OpenAccess from 2021-03-16.
|u https://juser.fz-juelich.de/record/838289/files/HE_25626_edit_report.pdf
856 4 _ |y Published on 2019-03-16. Available in OpenAccess from 2021-03-16.
|x pdfa
|u https://juser.fz-juelich.de/record/838289/files/HE_25626_edit_report.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:838289
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129892
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145276
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129851
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129857
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)171601
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129951
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Technoökonomische Systemanalyse
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
981 _ _ |a I:(DE-Juel1)ICE-2-20101013
981 _ _ |a I:(DE-Juel1)IET-4-20191129
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21