000838295 001__ 838295
000838295 005__ 20240711101459.0
000838295 0247_ $$2doi$$a10.1039/C7CP05213H
000838295 0247_ $$2ISSN$$a1463-9076
000838295 0247_ $$2ISSN$$a1463-9084
000838295 0247_ $$2pmid$$apmid:28948987
000838295 0247_ $$2WOS$$aWOS:000412763700013
000838295 0247_ $$2altmetric$$aaltmetric:24914652
000838295 037__ $$aFZJ-2017-06938
000838295 041__ $$aEnglish
000838295 082__ $$a540
000838295 1001_ $$0P:(DE-Juel1)166094$$aSchleutker, Marco$$b0
000838295 245__ $$aOn the interfacial charge transfer between solid and liquid Li + electrolytes
000838295 260__ $$aCambridge$$bRSC Publ.$$c2017
000838295 3367_ $$2DRIVER$$aarticle
000838295 3367_ $$2DataCite$$aOutput Types/Journal article
000838295 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544090720_16461
000838295 3367_ $$2BibTeX$$aARTICLE
000838295 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838295 3367_ $$00$$2EndNote$$aJournal Article
000838295 520__ $$aThe Li+ ion transfer between a solid and a liquid Li+ electrolyte has been investigated by DC polarisation techniques. The current density i is measured as a function of the electrochemical potential drop Δ[small mu, Greek, tilde]Li+ at the interface, using a liquid electrolyte with different Li+ concentrations. The subject of this experimental study is the interface between the solid electrolyte Ta-substituted lithium lanthanum zirconate (Li6.6La3Zr1.6Ta0.4O12) and a liquid electrolyte consisting of LiPF6 dissolved in ethylene carbonate/dimethyl carbonate (1 : 1). The functional course of i vs. Δ[small mu, Greek, tilde]Li+ can be described by a serial connection between a constant ohmic resistance Rslei and a current dependent thermally activated ion transfer process. For the present solid–liquid electrolyte interface the areal resistance Rslei of the surface layer is independent of the Li+ concentration in the liquid electrolyte. At room temperature a value of about 300 Ω cm2 is found. The constant ohmic resistance Rslei can be attributed to a surface layer on the solid electrolyte with a (relatively) low conductivity (solid–liquid electrolyte interphase). The low conducting surface layer is formed by degradation reactions with the liquid electrolyte. Rslei is considerably increased if a small amount (ppm) of water is added to the liquid electrolyte. The thermally activated ionic transfer process obeys a Butler–Volmer like behaviour, resulting in an exchange current density i0 depending on the Li+ concentration in the liquid electrolyte by a power-law. At a Li+ concentration of 1 mol l−1 a value of 53.1 μA cm−2 is found. A charge transfer coefficient α of ∼0.44 is measured. The finding of a superposed constant ohmic resistance due to a solid–liquid electrolyte interphase and a current dependent thermally activated ion transfer process is confirmed by the results of two former experimental studies from the literature, performing AC measurements/EIS.
000838295 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000838295 588__ $$aDataset connected to CrossRef
000838295 7001_ $$0P:(DE-HGF)0$$aBahner, Jochen$$b1
000838295 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b2
000838295 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b3
000838295 7001_ $$0P:(DE-Juel1)140525$$aKorte, Carsten$$b4$$eCorresponding author
000838295 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C7CP05213H$$gp. 10.1039.C7CP05213H$$n39$$p26596--26605$$tPhysical chemistry, chemical physics$$v19$$x1463-9084$$y2017
000838295 8564_ $$uhttps://juser.fz-juelich.de/record/838295/files/c7cp05213h.pdf$$yRestricted
000838295 8564_ $$uhttps://juser.fz-juelich.de/record/838295/files/c7cp05213h.gif?subformat=icon$$xicon$$yRestricted
000838295 8564_ $$uhttps://juser.fz-juelich.de/record/838295/files/c7cp05213h.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838295 8564_ $$uhttps://juser.fz-juelich.de/record/838295/files/c7cp05213h.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838295 8564_ $$uhttps://juser.fz-juelich.de/record/838295/files/c7cp05213h.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838295 8564_ $$uhttps://juser.fz-juelich.de/record/838295/files/c7cp05213h.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838295 909CO $$ooai:juser.fz-juelich.de:838295$$pVDB
000838295 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166094$$aForschungszentrum Jülich$$b0$$kFZJ
000838295 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich$$b2$$kFZJ
000838295 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b3$$kFZJ
000838295 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140525$$aForschungszentrum Jülich$$b4$$kFZJ
000838295 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000838295 9141_ $$y2017
000838295 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000838295 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000838295 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2015
000838295 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838295 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838295 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838295 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838295 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838295 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838295 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838295 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000838295 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000838295 920__ $$lyes
000838295 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000838295 980__ $$ajournal
000838295 980__ $$aVDB
000838295 980__ $$aI:(DE-Juel1)IEK-3-20101013
000838295 980__ $$aUNRESTRICTED
000838295 981__ $$aI:(DE-Juel1)ICE-2-20101013