001     838299
005     20210129231528.0
024 7 _ |a 10.1016/j.actamat.2017.08.049
|2 doi
024 7 _ |a 1359-6454
|2 ISSN
024 7 _ |a 1873-2453
|2 ISSN
024 7 _ |a WOS:000413879800027
|2 WOS
024 7 _ |a altmetric:24781278
|2 altmetric
037 _ _ |a FZJ-2017-06942
082 _ _ |a 670
100 1 _ |a Yao, M. J.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1507639782_20019
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We report on the strengthening and strain hardening mechanisms in an aged high-Mn lightweight steel (Fe-30.4Mn-8Al-1.2C, wt.%) studied by electron channeling contrast imaging (ECCI), transmission electron microscopy (TEM), atom probe tomography (APT) and correlative TEM/APT. Upon isothermal annealing at 600 °C, nano-sized κ-carbides form, as characterized by TEM and APT. The resultant alloy exhibits high strength and excellent ductility accompanied by a high constant strain hardening rate.In comparison to the as-quenched κ-free state, the precipitation of κ-carbides leads to a significant increase in yield strength (∼480 MPa) without sacrificing much tensile elongation. To study the strengthening and strain hardening behavior of the precipitation-hardened material, deformation microstructures were analyzed at different strain levels. TEM and correlative TEM/APT results show that the κ-carbides are primarily sheared by lattice dislocations, gliding on the typical face-centered-cubic (fcc) slip system {111}<110>, leading to particle dissolution and solute segregation. Ordering strengthening is the predominant strengthening mechanism. As the deformation substructure is characterized by planar slip bands, we quantitatively studied the evolution of the slip band spacing during straining to understand the strain hardening behavior. A good agreement between the calculated flow stresses and the experimental data suggests that dynamic slip band refinement is the main strain hardening mechanism. The influence of κ-carbides on mechanical properties is discussed by comparing the results with that of the same alloy in the as-quenched, κ-free state.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Welsch, E.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ponge, D.
|0 0000-0002-6378-379X
|b 2
|e Corresponding author
700 1 _ |a Haghighat, S. M. H.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sandlöbes, S.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Choi, P.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Herbig, M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Bleskov, I.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Hickel, T.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Lipinska-Chwalek, M.
|0 P:(DE-Juel1)161504
|b 9
700 1 _ |a Shanthraj, P.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Scheu, C.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Zaefferer, S.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Gault, B.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Raabe, D.
|0 P:(DE-HGF)0
|b 14
773 _ _ |a 10.1016/j.actamat.2017.08.049
|g Vol. 140, p. 258 - 273
|0 PERI:(DE-600)2014621-8
|p 258 - 273
|t Acta materialia
|v 140
|y 2017
|x 1359-6454
856 4 _ |u https://juser.fz-juelich.de/record/838299/files/1-s2.0-S135964541730705X-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838299/files/1-s2.0-S135964541730705X-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838299/files/1-s2.0-S135964541730705X-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838299/files/1-s2.0-S135964541730705X-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838299/files/1-s2.0-S135964541730705X-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838299/files/1-s2.0-S135964541730705X-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:838299
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)161504
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA MATER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACTA MATER : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21