001     838323
005     20240711085620.0
024 7 _ |2 doi
|a 10.1016/j.seppur.2016.10.009
024 7 _ |2 ISSN
|a 1383-5866
024 7 _ |2 ISSN
|a 1873-3794
024 7 _ |2 Handle
|a 2128/15584
024 7 _ |2 WOS
|a WOS:000389091700019
024 7 _ |a altmetric:12963021
|2 altmetric
037 _ _ |a FZJ-2017-06961
082 _ _ |a 540
100 1 _ |0 P:(DE-HGF)0
|a Schmeda-Lopez, Diego R.
|b 0
245 _ _ |a Mixed matrix carbon stainless steel (MMCSS) hollow fibres for gas separation
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2017
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1507727657_19334
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a This work reports the preparation and investigation of novel mixed matrix carbon stainless steel (MMCSS) membranes. The study involves the production of MMCSS hollow fibres using SS particles of 6, 10, 16 and 45 μm in diameter, polyetherimide as a polymeric binder and pyrolysis using a N2 inert atmosphere. As a result, the binder pyrolysed to carbon was retained in the hollow fibre structure, filling the voids between the SS particles. Smaller SS particles (6 μm) yielded a bi-modal pore size distribution and superior mechanical properties. An interesting morphological feature was the formation of honeycomb-like carbon structures between the SS particles, attributed to the densification of the hollow fibre during pyrolysis at 1050 °C. The MMCSS hollow fibres (6 μm) delivered almost pure N2 for the separation of a synthetic flue gas composition (13% CO2 and 87% N2). It was found that CO2 had a strong affinity to the surface of the MMCSS materials (isosteric heat of adsorption of 38 kJ mol−1) whilst N2 was a non-absorbing gas. Therefore, CO2 permeation was controlled by surface diffusion whilst N2 was controlled by the faster Knudsen diffusion mechanism. For CO2 feed concentrations in excess of 13%, the CO2 diffusion increased as the excess CO2 could not adsorb on the fully saturated surface of the MMCSS hollow fibres, thus slightly reducing the N2 purity in the permeate stream.
536 _ _ |0 G:(DE-HGF)POF3-113
|a 113 - Methods and Concepts for Material Development (POF3-113)
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Smart, Simon
|b 1
700 1 _ |0 P:(DE-Juel1)129637
|a Meulenberg, Wilhelm A.
|b 2
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Diniz da Costa, João C.
|b 3
|e Corresponding author
773 _ _ |0 PERI:(DE-600)2022535-0
|a 10.1016/j.seppur.2016.10.009
|g Vol. 174, p. 150 - 158
|p 150 - 158
|t Separation and purification technology
|v 174
|x 1383-5866
|y 2017
856 4 _ |u https://juser.fz-juelich.de/record/838323/files/1-s2.0-S138358661631680X-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838323/files/SPT_schmeda_etal%20manuscript.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838323/files/SPT_schmeda_etal%20manuscript.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838323/files/SPT_schmeda_etal%20manuscript.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838323/files/SPT_schmeda_etal%20manuscript.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838323/files/SPT_schmeda_etal%20manuscript.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838323/files/SPT_schmeda_etal%20manuscript.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838323/files/1-s2.0-S138358661631680X-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838323/files/1-s2.0-S138358661631680X-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838323/files/1-s2.0-S138358661631680X-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838323/files/1-s2.0-S138358661631680X-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838323/files/1-s2.0-S138358661631680X-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:838323
|p openaire
|p driver
|p open_access
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129637
|a Forschungszentrum Jülich
|b 2
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-113
|1 G:(DE-HGF)POF3-110
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b SEP PURIF TECHNOL : 2015
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21