001     838345
005     20240712112823.0
024 7 _ |a 10.1016/j.eml.2017.05.001
|2 doi
024 7 _ |a 2128/15609
|2 Handle
024 7 _ |a WOS:000418473100021
|2 WOS
024 7 _ |a altmetric:27458987
|2 altmetric
037 _ _ |a FZJ-2017-06970
100 1 _ |a Laptev, Alexander M.
|0 P:(DE-Juel1)164315
|b 0
|e Corresponding author
245 _ _ |a Modeling large patterned deflection during lithiation of micro-structured silicon
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1507885760_2852
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The application of silicon (Si) as potential anode material in Li-ion batteries provides a more than nine-fold increase in gravimetric storage capacity compared to conventional graphite anodes. However, full lithiation of Si induces the volume to increase by approximately 300%. Such enormous volume expansion causes large mechanical stress, resulting in non-elastic deformation and crack formation. This ultimately leads to anode failure and strong decrease in cycle life. This problem can be resolved by making use of structured anodes with small dimensions. Particularly honeycomb-shaped microstructures turned out to be beneficial in this respect. In the present paper, finite element modeling was applied to describe the experimentally observed mechanical deformation of honeycomb-structured Si anodes upon lithiation. A close agreement between simulated and experimentally observed shape changes is observed in all cases. The predictive ability of the model was further exploited by investigating alternative geometries, such as square-based microstructure. Strikingly, dimension and pattern optimization shows that the stress levels can be reduced even below the yield strength, while maintaining the footprint-area-specific storage capacity of the microstructures. The pure elastic deformation is highly beneficial for the fatigue resistance of optimized silicon structures. The obtained results are directly applicable for other (de)lithiating materials, such as mixed ionic–electronic conductors (MIEC) widely applied in Li-ion and future Na-ion batteries.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Malede, Yohanes C.
|0 0000-0001-5558-4689
|b 1
700 1 _ |a Duan, Shanghong
|0 P:(DE-Juel1)168330
|b 2
700 1 _ |a Mücke, Robert
|0 P:(DE-Juel1)129641
|b 3
|u fzj
700 1 _ |a Danilov, Dmitry
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Notten, Peter H. L.
|0 P:(DE-Juel1)165918
|b 5
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 6
|u fzj
773 _ _ |a 10.1016/j.eml.2017.05.001
|g Vol. 15, p. 145 - 150
|0 PERI:(DE-600)2810750-0
|p 145 - 150
|t Extreme mechanics letters
|v 15
|y 2017
|x 2352-4316
856 4 _ |u https://juser.fz-juelich.de/record/838345/files/1-s2.0-S2352431617300524-main.pdf
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/838345/files/EML_282_accepted_manuscript_%28Laptev%29.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/838345/files/EML_282_accepted_manuscript_%28Laptev%29.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/838345/files/EML_282_accepted_manuscript_%28Laptev%29.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/838345/files/EML_282_accepted_manuscript_%28Laptev%29.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/838345/files/EML_282_accepted_manuscript_%28Laptev%29.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/838345/files/EML_282_accepted_manuscript_%28Laptev%29.pdf?subformat=pdfa
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/838345/files/1-s2.0-S2352431617300524-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/838345/files/1-s2.0-S2352431617300524-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/838345/files/1-s2.0-S2352431617300524-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/838345/files/1-s2.0-S2352431617300524-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/838345/files/1-s2.0-S2352431617300524-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:838345
|p openaire
|p driver
|p open_access
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164315
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129641
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)165918
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21