000838360 001__ 838360
000838360 005__ 20240711085621.0
000838360 0247_ $$2doi$$a10.1149/2.0931707jes
000838360 0247_ $$2ISSN$$a0013-4651
000838360 0247_ $$2ISSN$$a0096-4743
000838360 0247_ $$2ISSN$$a0096-4786
000838360 0247_ $$2ISSN$$a1945-7111
000838360 0247_ $$2Handle$$a2128/15954
000838360 0247_ $$2WOS$$aWOS:000404397300150
000838360 037__ $$aFZJ-2017-06976
000838360 082__ $$a540
000838360 1001_ $$00000-0002-3519-3987$$aNeuhaus, Kerstin$$b0$$eCorresponding author
000838360 245__ $$aAnalysis of Charge Transport in Ce 0.8 Gd 0.2-x Pr x O 2-δ at T ≤ 600°C
000838360 260__ $$aPennington, NJ$$bElectrochemical Soc.$$c2017
000838360 3367_ $$2DRIVER$$aarticle
000838360 3367_ $$2DataCite$$aOutput Types/Journal article
000838360 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511511989_11653
000838360 3367_ $$2BibTeX$$aARTICLE
000838360 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838360 3367_ $$00$$2EndNote$$aJournal Article
000838360 520__ $$aDoped ceria pellets with the composition Ce0.8Gd0.2-xPrxO2-δ with x = 0.15, 0.1, 0.05, and 0.03 were investigated with a special focus on the partial conductivities in the temperature range of 200–600°C. Temperature dependent conductivity provided by impedance spectroscopy in air was compared to measurements of the oxygen partial pressure dependent electronic conductivity. The electronic conductivity was analyzed down to 200°C by using a modified Hebb-Wagner setup with encapsulated Pt microcontacts. A small polaron hopping process introduced by reduction of praseodymium was found to have a pronounced influence on the electronic conductivity at low temperatures. A splitting of the maximum introduced by praseodymium small polaron hopping was observed. Especially for the compositions x ≤ 0.1, a strong deviation of the electronic conductivity curves from the standard acceptor doping case was measured due to superimposed electronic conductivity from the Pr3+/4+ redox reaction. 
000838360 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000838360 588__ $$aDataset connected to CrossRef
000838360 7001_ $$0P:(DE-Juel1)169837$$aEickholt, Sebastian$$b1
000838360 7001_ $$0P:(DE-HGF)0$$aMaheshwari, Aditya$$b2
000838360 7001_ $$0P:(DE-Juel1)129660$$aSchulze-Küppers, Falk$$b3$$ufzj
000838360 7001_ $$0P:(DE-Juel1)129587$$aBaumann, Stefan$$b4$$ufzj
000838360 7001_ $$0P:(DE-HGF)0$$aWiemhöfer, Hans-Dieter$$b5
000838360 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/2.0931707jes$$gVol. 164, no. 7, p. H491 - H496$$n7$$pH491 - H496$$tJournal of the Electrochemical Society$$v164$$x1945-7111$$y2017
000838360 8564_ $$uhttps://juser.fz-juelich.de/record/838360/files/J.%20Electrochem.%20Soc.-2017-Neuhaus-H491-6.pdf$$yRestricted
000838360 8564_ $$uhttps://juser.fz-juelich.de/record/838360/files/Neuhaus2017.pdf$$yOpenAccess
000838360 8564_ $$uhttps://juser.fz-juelich.de/record/838360/files/Neuhaus2017.gif?subformat=icon$$xicon$$yOpenAccess
000838360 8564_ $$uhttps://juser.fz-juelich.de/record/838360/files/Neuhaus2017.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000838360 8564_ $$uhttps://juser.fz-juelich.de/record/838360/files/Neuhaus2017.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000838360 8564_ $$uhttps://juser.fz-juelich.de/record/838360/files/Neuhaus2017.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000838360 8564_ $$uhttps://juser.fz-juelich.de/record/838360/files/Neuhaus2017.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000838360 8564_ $$uhttps://juser.fz-juelich.de/record/838360/files/J.%20Electrochem.%20Soc.-2017-Neuhaus-H491-6.gif?subformat=icon$$xicon$$yRestricted
000838360 8564_ $$uhttps://juser.fz-juelich.de/record/838360/files/J.%20Electrochem.%20Soc.-2017-Neuhaus-H491-6.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838360 8564_ $$uhttps://juser.fz-juelich.de/record/838360/files/J.%20Electrochem.%20Soc.-2017-Neuhaus-H491-6.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838360 8564_ $$uhttps://juser.fz-juelich.de/record/838360/files/J.%20Electrochem.%20Soc.-2017-Neuhaus-H491-6.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838360 8564_ $$uhttps://juser.fz-juelich.de/record/838360/files/J.%20Electrochem.%20Soc.-2017-Neuhaus-H491-6.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838360 909CO $$ooai:juser.fz-juelich.de:838360$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$popenaire
000838360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129660$$aForschungszentrum Jülich$$b3$$kFZJ
000838360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich$$b4$$kFZJ
000838360 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000838360 9141_ $$y2017
000838360 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838360 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000838360 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2015
000838360 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838360 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838360 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838360 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000838360 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000838360 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000838360 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838360 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838360 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000838360 9801_ $$aFullTexts
000838360 980__ $$ajournal
000838360 980__ $$aVDB
000838360 980__ $$aUNRESTRICTED
000838360 980__ $$aI:(DE-Juel1)IEK-1-20101013
000838360 981__ $$aI:(DE-Juel1)IMD-2-20101013