001     838376
005     20240625095033.0
024 7 _ |a 10.1103/PhysRevLett.119.156601
|2 doi
024 7 _ |a 0031-9007
|2 ISSN
024 7 _ |a 1079-7114
|2 ISSN
024 7 _ |a 1092-0145
|2 ISSN
024 7 _ |a 2128/15612
|2 Handle
024 7 _ |a pmid:29077442
|2 pmid
024 7 _ |a WOS:000412979000014
|2 WOS
024 7 _ |a altmetric:15845082
|2 altmetric
037 _ _ |a FZJ-2017-06988
082 _ _ |a 550
100 1 _ |a Nghiem, Hoa
|0 P:(DE-Juel1)156259
|b 0
|u fzj
245 _ _ |a Time Evolution of the Kondo Resonance in Response to a Quench
260 _ _ |a College Park, Md.
|c 2017
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552641609_21967
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We investigate the time evolution of the Kondo resonance in response to a quench by applying the time-dependent numerical renormalization group (TDNRG) approach to the Anderson impurity model in the strong correlation limit. For this purpose, we derive within the TDNRG approach a numerically tractable expression for the retarded two-time nonequilibrium Green function G(t+t′,t), and its associated time-dependent spectral function, A(ω,t), for times t both before and after the quench. Quenches from both mixed valence and Kondo correlated initial states to Kondo correlated final states are considered. For both cases, we find that the Kondo resonance in the zero temperature spectral function, a preformed version of which is evident at very short times t→0+, only fully develops at very long times t≳1/TK, where TK is the Kondo temperature of the final state. In contrast, the final state satellite peaks develop on a fast time scale 1/Γ during the time interval −1/Γ≲t≲+1/Γ, where Γ is the hybridization strength. Initial and final state spectral functions are recovered in the limits t→−∞ and t→+∞, respectively. Our formulation of two-time nonequilibrium Green functions within the TDNRG approach provides a first step towards using this method as an impurity solver within nonequilibrium dynamical mean field theory.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a Thermoelectric properties of molecular quantum dots and time-dependent response of quantum dots (jiff23_20140501)
|0 G:(DE-Juel1)jiff23_20140501
|c jiff23_20140501
|f Thermoelectric properties of molecular quantum dots and time-dependent response of quantum dots
|x 1
536 _ _ |a Density functional calculations with molecular dynamics -- amorphous and crystalline materials (jiff05_20170501)
|0 G:(DE-Juel1)jiff05_20170501
|c jiff05_20170501
|f Density functional calculations with molecular dynamics -- amorphous and crystalline materials
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Costi, Theodoulos
|0 P:(DE-Juel1)130600
|b 1
|e Corresponding author
|u fzj
773 _ _ |a 10.1103/PhysRevLett.119.156601
|g Vol. 119, no. 15, p. 156601
|0 PERI:(DE-600)1472655-5
|n 15
|p 156601
|t Physical review letters
|v 119
|y 2017
|x 1079-7114
856 4 _ |u https://juser.fz-juelich.de/record/838376/files/PhysRevLett.119.156601.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838376/files/PhysRevLett.119.156601.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838376/files/PhysRevLett.119.156601.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838376/files/PhysRevLett.119.156601.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838376/files/PhysRevLett.119.156601.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838376/files/PhysRevLett.119.156601.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:838376
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156259
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130600
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV LETT : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHYS REV LETT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-3-20090406
|k IAS-3
|l Theoretische Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-3-20090406
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21