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We investigate the time evolution of the Kondo resonance in response to a quench by applying the time-

dependent numerical renormalization group (TDNRG) approach to the Anderson impurity model in the

strong correlation limit. For this purpose, we derive within the TDNRG approach a numerically tractable

expression for the retarded two-time nonequilibrium Green function Gðtþ t0; tÞ, and its associated time-

dependent spectral function, Aðω; tÞ, for times t both before and after the quench. Quenches from both

mixed valence and Kondo correlated initial states to Kondo correlated final states are considered. For both

cases, we find that the Kondo resonance in the zero temperature spectral function, a preformed version of

which is evident at very short times t→ 0þ, only fully develops at very long times t≳ 1=TK , where TK is

the Kondo temperature of the final state. In contrast, the final state satellite peaks develop on a fast time

scale 1=Γ during the time interval −1=Γ≲ t ≲þ1=Γ, where Γ is the hybridization strength. Initial and final

state spectral functions are recovered in the limits t → −∞ and t → þ∞, respectively. Our formulation of

two-time nonequilibrium Green functions within the TDNRG approach provides a first step towards using

this method as an impurity solver within nonequilibrium dynamical mean field theory.

DOI: 10.1103/PhysRevLett.119.156601

Introduction.—Thenonequilibriumproperties of strongly

correlated quantum impurity models continue to pose a

major theoretical challenge. This contrasts with their equi-

librium properties, which are largely well understood [1], or

can be investigated within a number of highly accurate

methods, such as the numerical renormalization group

(NRG) method [2–5], the continuous time quantum

Monte Carlo (CTQMC) approach [6], the density matrix

renormalization group [7], or the Bethe ansatz method [8,9].

Quantum impurity models far from equilibrium are of direct

relevance to several fields of research, including charge

transfer effects in low-energy ion-surface scattering

[10–17], transient and steady state effects in molecular

and semiconductor quantum dots [18–36], and also in the

context of dynamical mean field theory (DMFT) of strongly

correlated lattice models [37–39], as generalized to non-

equilibrium [40–42]. In the latter, further progress hinges on

an accurate nonperturbative solution for the nonequilibrium

Green functions of an effective quantum impurity model.

Such a solution, beyond allowing time-resolved spectros-

copies of correlated lattice systems within DMFT to be

addressed [43–47], would also be useful in understanding

time-resolved scanning tunnelling microscopy of nanoscale

systems [48] and proposed cold atom realizations of Kondo

correlated states [49–52], which could be probed with real-

time radio-frequency spectroscopy [53–55].

In this Letter, we use the time-dependent numerical

renormalization group (TDNRG) approach [56–62] to calcu-

late the retarded two-timeGreen function,Gðt1¼tþt0;t2¼tÞ,
and associated spectral function, Aðω; tÞ, of the Anderson

impurity model in response to a quench at time t ¼ 0, and

apply this to investigate in detail the time evolution of the

Kondo resonance. This topic has been addressed beforewithin

several approaches, including the noncrossing approximation

[26,63], conserving approximations [64], and within the

CTQMC method for quantum dots out of equilibrium [32].

Related work on the temporal evolution of the spin-spin

correlation function in theKondomodel and thermalization in

the Anderson impurity model following initial state prepara-

tions has also been carried out [65,66]. Formulations of the

time-dependent spectral function within the TDNRG

approach are also available [59,67], but only for positive

times. Here, we derive expressions for the two-time Green

function and spectral function Aðω; tÞ which are numerically

tractable at arbitrary times, including negative times. Themain

advantagesof theTDNRGapproachover other approaches for

calculating time-dependent spectral functions is that it can

access arbitrary long times (t → �∞) and arbitrary low

temperatures and frequencies, is nonperturbative and calcu-

lates spectral functions directly on the real frequency axis. It is

therefore well suited for investigating the formation in time

of the exponentially narrow and low temperature Kondo

resonance [68].

Model and quenches.—We consider the time-dependent

Anderson impurity model,H¼
P

σεdðtÞndσþUðtÞnd↑nd↓þ
P

kσϵkc
†

kσckσþ
P

kσVðc
†

kσdσþd†σckσÞ, where εdðtÞ ¼
θð−tÞεi þ θðtÞεf is the energy of the local level, UðtÞ ¼
θð−tÞUi þ θðtÞUf is the local Coulomb interaction, σ

labels the spin, ndσ ¼ d†σdσ is the number operator for

local electrons with spin σ, and εk is the kinetic energy of

the conduction electrons with constant density of states

ρðωÞ¼
P

kδðω−εkÞ¼1=2DwithD¼1 the half-bandwidth.

PRL 119, 156601 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

13 OCTOBER 2017

0031-9007=17=119(15)=156601(6) 156601-1 © 2017 American Physical Society



We take Γ≡πρð0ÞV2¼0.001 throughout and consider two

types of quench [referred to subsequently as quench (A)

or quench (B)]: (A), from a symmetric Kondo regime

with εi ¼ −15Γ, Ui ¼ 30Γ and a vanishingly small Kondo

scale Ti
K ¼ 3 × 10−8 [71] to a symmetric Kondo regime

with εf ¼ −6Γ, Uf ¼ 12Γ and a larger Kondo scale

TK ¼ 2.5 × 10−5, and, (B), from a mixed valence regime

with εi ¼ −Γ, Ui ¼ 8Γ to a symmetric Kondo regime with

εf ¼ −4Γ, Uf ¼ 8Γ and a Kondo scale TK ¼ 1.0 × 10−4.

Spectral function Aðω; tÞ.—Weobtain the time-dependent

spectral function via Aðω; tÞ ¼ −ð1=πÞIm½Gðωþ iη; tÞ�,
where Gðωþiη;tÞ, with infinitesimal η > 0, is the Fourier

transform of Gðtþ t0; tÞ≡ −iθðt0Þh½dσðtþ t0Þ; d†σðtÞ�þiρ̂
with respect to the relative time t0 and ρ̂ denotes the full

density matrix of the initial state [73–75]. In the notation of

Ref. [61], we find for the case of positive times [76]

Gðωþ iη; tÞ ¼
X

N

m¼m0

X

∉KK0K00

rsq

ρ
i→f
sr ðmÞe−iðE

m
s −E

m
r Þt

×

�

Bm
rqC

m
qs

ωþEm
r −Em

q þ iη
þ

Cm
rqB

m
qs

ωþEm
q −Em

s þ iη

�

;

ð1Þ

where B ¼ dσ, C ¼ d†σ , and ρ
i→f
sr ðmÞ ¼

P

efhsemjρ̂jremif
is the full reduced density matrix projected onto the final

states [61]. A somewhat more complicated expression can be

derived for negative times [76]. From Eq. (1), we see that the

spectral function can be calculated highly efficiently at all

times and frequencies froma knowledge ofρ
i→f
sr ðmÞ, the final

state matrix elements, and excitations at each shell m. Our

expressions for Aðω; tÞ in the two time domains t < 0 and

t > 0 recover the initial and final state spectral functions for

t → −∞ and t → þ∞, respectively, and satisfy the spectral

sum rule
R

þ∞
−∞

dωAðω; tÞ ¼ 1 exactly [76]. Below, we shall

first focus on positive times,where themain time evolution of

the Kondo resonance occurs, then on negative to positive

times, showing how the high energy final state features in

Aðω; tÞ evolve from their initial state counterparts already at

negative times.

Results for positive times.—Consider quench (A), i.e.,

switching between symmetric Kondo regimes with

Ti
K ≪ TK. Figure 1(a) shows the overall time dependence

of the spectral function Aðω > 0; t > 0Þ ¼ Að−ω; t > 0Þ.
Two structures, associated with two energy scales, are

visible at all times t > 0: the satellite peak at ω ¼
εf þ Uf ≈ 240TK and a structure on the scale of TK around

the Fermi level. The former has negligible time depend-

ence, indicating that the satellite peak in the spectral

function has already formed by time t ¼ 0 (its evolution

at negative times from the initial state satellite peak at ω ¼
εi þ Ui > εf þUf is discussed below). In contrast to this,

the structure around the Fermi level has significant time

dependence at t > 0 and evolves into the fully formed final

state Kondo resonance only on time scales t≳ 1=TK

[Figs. 1(c) and 1(d)] in agreement with Ref. [26] for the

U ¼ ∞ Anderson model. For tTK ≫ 1, the height of the

Kondo resonance at the Fermi level approaches its unitary

value given by the Friedel sum rule πΓAðω ¼ 0; t → ∞Þ ¼
1 to within 15% [Fig. 1(d)]. The small deviation from the

expected value is a result of incomplete thermalization due

to the discretized Wilson chain used within the TDNRG

approach [67,69,76]. Consequently, evaluating Aðω;t→∞Þ
via the self-energy [80] does not improve the Friedel sum

rule further in this limit [59]. In the opposite limit, t → −∞,

where thermalization is not an issue, we recover the Friedel

sum rule to within 3% (discussed below). The use of a

discrete Wilson chain is also the origin of the small

substructures at jωj ≲ TK in Figs. 1(b)–1(d), effects seen

in the time evolution of other quantities, such as the local

occupation, and explained in terms of the discrete Wilson

chain [81]. On shorter time scales, tTK ≲ 1, states in the

region Ti
K ≪ jωj < TK , initially missing [Fig. 1(b)], are

gradually filled in by a transfer of spectral weight from

higher energies [Fig. 1(c)] to form the final state Kondo

resonance at long times [Fig. 1(d)]. The presence of a

structure on the final state Kondo scale TK at short times

t → 0þ is understood as follows: the Fourier transform with

 0.0001  0.001  0.01  0.1  1  10  100  1000  10000

tTK

 0.01

 0.1

 1

 10

 100

 1000

ω
/T

K

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1
(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-2

10
0

10
2

tTK=0.001

(b)

π
Γ

A
(ω

,t
)

ω/TK

     

     

     

     

     

     

10
-2

10
0

10
2

tTK=1

(c)

ω/TK

     

     

     

     

     

     

10
-2

10
0

10
2

tTK=1000

(d)

ω/TK

FIG. 1. (a) Time evolution of the normalized spectral function

πΓAðω > 0; tÞ for the symmetric Anderson model at positive

times, following a quench at t ¼ 0 specified by εi ¼ −15Γ,

Ui ¼ 30Γ, and εf ¼ −6Γ, Uf ¼ 12Γ with final state Kondo

temperature TK ¼ 2.5 × 10−5. A structure on the scale of TK

evolves into the Kondo resonance at long times t≳ 1=TK , while a

structure at ω ¼ εf þUf ≈ 240TK with negligible time depend-

ence corresponds to the final state satellite peak. Panels (b)–(d)

show the spectral function at times tTK ¼ 0.001, 1, and 1000,

respectively. The TDNRG calculations used a discretization

parameter Λ ¼ 4, z averaging [78,79] with Nz ¼ 32 and a cutoff

energy Ecut ¼ 24.
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respect to t0 ¼ t1 − t2 necessarily convolutes information

about the final state at large t1, t2 into the spectral function

at short times t [82]. Hence, the gross features of the

spectral function, even at short times t → 0þ, are close to

those of the final state spectral function Aðω; t → ∞Þ, and
far from those of the initial state spectral function. Clear

signatures of the latter, such as the much narrower initial

state Kondo peak, only appear at negative times.

Consider now quench (B), in which the system, is

switched from the mixed valence to the symmetric

Kondo regime. Figures 2(a) and 2(b) show the overall

time dependence of the spectral function for ω < 0

[Fig. 2(a)] and ω > 0 [Fig. 2(b)]. As for quench (A),

two structures associated with two energy scales are again

visible at all times t > 0: the satellite peaks at ω ¼ εf ≈

−40TK [Fig. 2(a)] and ω ¼ εf þ U ≈þ40TK [Fig. 2(b)]

and a structure on the scale of TK around the Fermi level

[Figs. 2(a) and 2(b)]. In contrast to quench (A), the former

have some non-negligible time dependence at short positive

times as can be seen in Fig. 2(c) for tTK ¼ 10−4

(tΓ ¼ 10−3), where the weight of the satellite peaks has

still not equalized. This asymmetry vanishes on time scales

exceeding 1=Γ [Figs. 2(d) and 2(e) for tTK ¼ 1 (tΓ ¼ 10)

and tTK ¼ 104 (tΓ ¼ 103), respectively]. The low energy

structure of width TK , initially asymmetric and exceeding

the unitary height 1=πΓ, has significant time dependence

for t > 0 and evolves into the fully developed Kondo

resonance at t≳ 1=TK [Figs. 2(d) and 2(e)]. The deviation

from the Friedel sum rule πΓAðω ¼ 0; t → ∞Þ ¼ 1 is

comparable to that for quench (A) and reflects the incom-

plete thermalization due to the discrete Wilson chain used

within the TDNRG approach. The discrete Wilson chain

also results in the substructures at jωj≲ TK in Figs. 2(c)

and 2(d) and in the small remaining asymmetry of the fully

developed Kondo resonance in Fig. 2(e).

From negative to positive times.—Figures 3(a) and 3(b)

show the overall time dependence of the spectral function for

negative and positive times, respectively, for quench (A),

on a linear frequency scale. As for positive times [Fig. 1(a)

andFig. 3(b)], low and high energy structures arevisible also

for negative times [Fig. 3(a)]. Moreover, it is clear from

Figs. 3(a) and 3(b) that the transition from the initial to the

final state spectral function occurs on different time scales

for the different structures. Consider first the high energy

structures, which carry essentially all the spectral weight.

Initially, these are located at ω ¼ �εi ≈�600TK as is

clearly visible in Fig. 3(a) or in Fig. 3(c) for tTK ¼ −103

(tΓ ¼ −4 × 104 ≪ −1). They cross over to their final state

positions at ω ¼ �εf ¼ �240TK when tTK ≳ −10−2
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FIG. 2. Time evolution of the normalized spectral function

πΓAðω; tÞ at positive times, for, (a), negative, and, (b), positive

frequencies, for quench (A) from the mixed valence to the

symmetric Kondo regime with TK ¼ 1.0 × 10−4. A structure

on the scale of TK evolves into the Kondo resonance at long times

t≳ 1=TK , while structures at ω ¼ �εf ≈�40TK , with negligible

time-dependence, correspond to the final state satellite peaks.

Panels (c)–(e) show the spectral function at times tTK ¼ 0.0001,

1, and 10000, respectively. TDNRG parameters: Λ¼4, z aver-

aging with Nz ¼ 64 and a cutoff energy Ecut ¼ 24.
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FIG. 3. Aðω; tÞ vs tTK from, (a), negative, to, (b), positive times

for quench (A), and on a linear frequency scale. Dashed lines

mark tΓ ¼ �1 (tTK¼�2.5×10−2). Initial state (ω¼�εi¼
�15Γ≈�600TK) and final state (ω ¼ �εf ¼ �6Γ ≈�240TK)

satellite peaks are clearly visible, as are initial and final state

Kondo resonances around ω ¼ 0. Panels (c)–(f) show the Aðω; tÞ
at times tTK ¼ −1000;−1;−0.001, and þ1000, respectively.

TDNRG parameters as in Fig. 2.
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(tΓ≳ −0.4) [Figs. 3(a) and 3(e)], i.e., on the charge

fluctuation time scale 1=Γ. This can also be seen in

Figs. 3(d) and 3(e). This large shift in spectral weight from

ω ¼ �εi to ω ¼ �εf in the time range −10−2 ≲ tTK ≲

−10−3 (−0.4≲ tΓ≲ −0.04), clearly seen in Fig. 3(a), is

accompanied by small regions of negative spectral weight

in this transient time range [76]. This does not violate any

exact results for time-dependent, as opposed to steady-state,

spectral functions, and is observed in other systems

[30,83,84]. The spectral sum rule is satisfied analytically

exactly at all times and numerically within 1% at all negative

times and to higher accuracy at positive times for all quench

protocols [76]. Turning now to the low energy structure, i.e.,

theKondo resonance, the use of a linear frequency scale now

allows the initial state Kondo resonance at ω ¼ 0 to be

clearly seen in Fig. 3(a) [see also Fig. 3(c)]. This structure,

of width Ti
K ≪ TK at t → −∞ and satisfying the Friedel

sum rule πΓAðω¼0;t→−∞Þ¼1, gradually broadens and

acquires a width of TK at short negative times [76], and then

evolves into the fully developed Kondo resonance on

positive time scales tTK≳1 [Fig. 3(e)].

Even more interesting is the negative [Fig. 4(a)] to

positive [Fig. 4(b)] time evolution of the spectral function

upon quenching from the mixed valence to the symmetric

Kondo regime [quench (B)]. At large negative times

[Fig. 4(c)], one recovers the initial state spectral function

of the mixed valence regime (with εi ¼ −Γ) showing a

mixed valence resonance, renormalized by many-body

effects to lie close to, but just above the Fermi level

εi→ ~εi≳0 and satisfying the Friedel sum ruleAð0;t→−∞Þ¼
sin2ðπnd=2Þ=πΓ to within 3% [85] [Figs. 4(a) and 4(c),

nd ¼ 0.675]. The upper satellite peak at ω ¼ εi þUi ¼
7Γ ≈ 70TK is more clearly visible in Fig. 4(c). These peaks

give rise to the final state satellite peaks at ω ¼ �εf ¼

�4Γ ≈�40TK which start to form already at negative times

tTK ≳ −10−1 (tΓ≳ −1), i.e., on the charge fluctuation time

scale 1=Γ, as for quench (A). While the positions of these

peaks start to shift to their final state values at negative times

tTK ≳ −10−1 (tΓ≳ −1), their weights remain disparate [see

Fig. 4(e)] and only equalize at tTK ≳þ10−1 (tΓ≳þ1) as

clearly seen in Fig. 4(b); i.e., the formation of the high energy

final state satellite peaks occurs on a fast time scale t ≈ 1=Γ in

the interval−1=Γ≲ t≲þ1=Γ (dashed lines in Fig. 4).Going

into more details, we see in Figs. 4(a) and 4(c)–4(e) the

deconstruction of the mixed valence resonance in the time

range−1=Γ < t < 0.While this resonance carries essentially

all the spectral weight at t ≪ −1=Γ, weight is gradually

transferred to ω < 0, with precursor oscillations starting at

tTK ¼ −1 (tΓ ¼ −10) [Fig. 4(d)], to form the lower final

state satellite peak at ω¼εf for −1=Γ<t<0 [Fig. 4(e)].

Simultaneously, the mixed valence resonance narrows from

its originalwidthΓ ≈ 10TK and shifts towards the Fermi level

to form a low energy structure on the scale of TK [Fig. 4(e)].

The latter eventually evolves into the final state Kondo

resonance at tTK ≳ 1. The final state spectral function is

recovered in the long-time limit tTK ≫ 1 [Fig. 4(f)].

Conclusions.—In summary, we investigated within the

TDNRG approach, the time evolution of the spectral

function of the Anderson impurity model in the strong

correlation limit. Quenching into a Kondo correlated final

state, we showed that the Kondo resonance in the zero

temperature spectral function only fully develops at very

long times t≳ 1=TK , although a preformed version of it is

evident even at very short times t → 0þ. The latter can be

used as a smoking gun signature of the transient build up of

the Kondo resonance in future cold atom realizations of

the Anderson impurity model [50]. The satellite peaks

evolve from their initial state values at negative times on a

much faster time scale t ≈ 1=Γ in the time-interval

−1=Γ≲ t≲ 1=Γ. Our formulation of sum rule conserving

two-time nonequilibrium Green functions within the

TDNRG approach, including lesser Green functions,

and their explicit dependence on both times [76], yields

the basic information required for applications to time-

dependent quantum transport [30] and constitutes a first

step towards using the TDNRG approach as an impurity

solver within nonequilibrium DMFT [41,42,86].
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