000838379 001__ 838379
000838379 005__ 20220930130133.0
000838379 0247_ $$2doi$$a10.1167/17.12.6
000838379 0247_ $$2Handle$$a2128/15613
000838379 0247_ $$2pmid$$apmid:29049593
000838379 0247_ $$2WOS$$aWOS:000417128900006
000838379 037__ $$aFZJ-2017-06991
000838379 082__ $$a610
000838379 1001_ $$0P:(DE-Juel1)145708$$aZimmermann, Eckart$$b0$$eCorresponding author
000838379 245__ $$aSpatiotopic updating of visual feature information.
000838379 260__ $$aRockville, Md.$$bARVO$$c2017
000838379 3367_ $$2DRIVER$$aarticle
000838379 3367_ $$2DataCite$$aOutput Types/Journal article
000838379 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1508143552_3743
000838379 3367_ $$2BibTeX$$aARTICLE
000838379 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838379 3367_ $$00$$2EndNote$$aJournal Article
000838379 520__ $$aSaccades shift the retina with high-speed motion. In order to compensate for the sudden displacement, the visuomotor system needs to combine saccade-related information and visual metrics. Many neurons in oculomotor but also in visual areas shift their receptive field shortly before the execution of a saccade (Duhamel, Colby, & Goldberg, 1992; Nakamura & Colby, 2002). These shifts supposedly enable the binding of information from before and after the saccade. It is a matter of current debate whether these shifts are merely location based (i.e., involve remapping of abstract spatial coordinates) or also comprise information about visual features. We have recently presented fMRI evidence for a feature-based remapping mechanism in visual areas V3, V4, and VO (Zimmermann, Weidner, Abdollahi, & Fink, 2016). In particular, we found fMRI adaptation in cortical regions representing a stimulus' retinotopic as well as its spatiotopic position. Here, we asked whether spatiotopic adaptation exists independently from retinotopic adaptation and which type of information is behaviorally more relevant after saccade execution. We first adapted at the saccade target location only and found a spatiotopic tilt aftereffect. Then, we simultaneously adapted both the fixation and the saccade target location but with opposite tilt orientations. As a result, adaptation from the fixation location was carried retinotopically to the saccade target position. The opposite tilt orientation at the retinotopic location altered the effects induced by spatiotopic adaptation. More precisely, it cancelled out spatiotopic adaptation at the saccade target location. We conclude that retinotopic and spatiotopic visual adaptation are independent effects.
000838379 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000838379 7001_ $$0P:(DE-Juel1)131747$$aWeidner, Ralph$$b1$$ufzj
000838379 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b2$$ufzj
000838379 773__ $$0PERI:(DE-600)2106064-2$$a10.1167/17.12.6$$n12$$p6, 1 - 9$$tJournal of vision$$v17$$x1534-7362$$y2017
000838379 8564_ $$uhttp://jov.arvojournals.org/article.aspx?articleid=2657342
000838379 8564_ $$uhttps://juser.fz-juelich.de/record/838379/files/i1534-7362-17-12-6.pdf$$yOpenAccess
000838379 8564_ $$uhttps://juser.fz-juelich.de/record/838379/files/i1534-7362-17-12-6.gif?subformat=icon$$xicon$$yOpenAccess
000838379 8564_ $$uhttps://juser.fz-juelich.de/record/838379/files/i1534-7362-17-12-6.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000838379 8564_ $$uhttps://juser.fz-juelich.de/record/838379/files/i1534-7362-17-12-6.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000838379 8564_ $$uhttps://juser.fz-juelich.de/record/838379/files/i1534-7362-17-12-6.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000838379 8564_ $$uhttps://juser.fz-juelich.de/record/838379/files/i1534-7362-17-12-6.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000838379 8767_ $$81000007322$$92017-10-16$$d2017-10-16$$eAPC$$jZahlung erfolgt$$lKK: Barbers$$zUSD 1850,-
000838379 909CO $$ooai:juser.fz-juelich.de:838379$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000838379 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838379 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000838379 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ VISION : 2015
000838379 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000838379 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000838379 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838379 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838379 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000838379 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000838379 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838379 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838379 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000838379 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838379 9141_ $$y2017
000838379 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145708$$aForschungszentrum Jülich$$b0$$kFZJ
000838379 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)145708$$aINM-3$$b0
000838379 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131747$$aForschungszentrum Jülich$$b1$$kFZJ
000838379 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b2$$kFZJ
000838379 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000838379 920__ $$lyes
000838379 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000838379 9801_ $$aFullTexts
000838379 980__ $$ajournal
000838379 980__ $$aVDB
000838379 980__ $$aUNRESTRICTED
000838379 980__ $$aI:(DE-Juel1)INM-3-20090406
000838379 980__ $$aAPC