001     838379
005     20220930130133.0
024 7 _ |a 10.1167/17.12.6
|2 doi
024 7 _ |a 2128/15613
|2 Handle
024 7 _ |a pmid:29049593
|2 pmid
024 7 _ |a WOS:000417128900006
|2 WOS
037 _ _ |a FZJ-2017-06991
082 _ _ |a 610
100 1 _ |0 P:(DE-Juel1)145708
|a Zimmermann, Eckart
|b 0
|e Corresponding author
245 _ _ |a Spatiotopic updating of visual feature information.
260 _ _ |a Rockville, Md.
|b ARVO
|c 2017
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1508143552_3743
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Saccades shift the retina with high-speed motion. In order to compensate for the sudden displacement, the visuomotor system needs to combine saccade-related information and visual metrics. Many neurons in oculomotor but also in visual areas shift their receptive field shortly before the execution of a saccade (Duhamel, Colby, & Goldberg, 1992; Nakamura & Colby, 2002). These shifts supposedly enable the binding of information from before and after the saccade. It is a matter of current debate whether these shifts are merely location based (i.e., involve remapping of abstract spatial coordinates) or also comprise information about visual features. We have recently presented fMRI evidence for a feature-based remapping mechanism in visual areas V3, V4, and VO (Zimmermann, Weidner, Abdollahi, & Fink, 2016). In particular, we found fMRI adaptation in cortical regions representing a stimulus' retinotopic as well as its spatiotopic position. Here, we asked whether spatiotopic adaptation exists independently from retinotopic adaptation and which type of information is behaviorally more relevant after saccade execution. We first adapted at the saccade target location only and found a spatiotopic tilt aftereffect. Then, we simultaneously adapted both the fixation and the saccade target location but with opposite tilt orientations. As a result, adaptation from the fixation location was carried retinotopically to the saccade target position. The opposite tilt orientation at the retinotopic location altered the effects induced by spatiotopic adaptation. More precisely, it cancelled out spatiotopic adaptation at the saccade target location. We conclude that retinotopic and spatiotopic visual adaptation are independent effects.
536 _ _ |0 G:(DE-HGF)POF3-572
|a 572 - (Dys-)function and Plasticity (POF3-572)
|c POF3-572
|f POF III
|x 0
700 1 _ |0 P:(DE-Juel1)131747
|a Weidner, Ralph
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)131720
|a Fink, Gereon Rudolf
|b 2
|u fzj
773 _ _ |0 PERI:(DE-600)2106064-2
|a 10.1167/17.12.6
|n 12
|p 6, 1 - 9
|t Journal of vision
|v 17
|x 1534-7362
|y 2017
856 4 _ |u http://jov.arvojournals.org/article.aspx?articleid=2657342
856 4 _ |u https://juser.fz-juelich.de/record/838379/files/i1534-7362-17-12-6.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838379/files/i1534-7362-17-12-6.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838379/files/i1534-7362-17-12-6.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838379/files/i1534-7362-17-12-6.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838379/files/i1534-7362-17-12-6.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838379/files/i1534-7362-17-12-6.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:838379
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145708
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-Juel1)145708
|a INM-3
|b 0
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131747
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131720
|a Forschungszentrum Jülich
|b 2
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-572
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
|a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J VISION : 2015
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)1110
|2 StatID
|a DBCoverage
|b Current Contents - Clinical Medicine
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21