001     838401
005     20220930130133.0
024 7 _ |a 10.1002/adfm.201702282
|2 doi
024 7 _ |a 1057-9257
|2 ISSN
024 7 _ |a 1099-0712
|2 ISSN
024 7 _ |a 1616-301X
|2 ISSN
024 7 _ |a 1616-3028
|2 ISSN
024 7 _ |a 2128/21136
|2 Handle
024 7 _ |a WOS:000416828500002
|2 WOS
024 7 _ |a altmetric:27336944
|2 altmetric
037 _ _ |a FZJ-2017-07013
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Arndt, Benedikt
|0 P:(DE-Juel1)158055
|b 0
|e Corresponding author
245 _ _ |a Spectroscopic Indications of Tunnel Barrier Charging as the Switching Mechanism in Memristive Devices
260 _ _ |a Weinheim
|c 2017
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1547471500_17711
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Resistive random access memory is a promising, energy-efficient, low-power “storage class memory” technology that has the potential to replace both flash storage and on-chip dynamic memory. While the most widely employed systems exhibit filamentary resistive switching, interface-type switching systems based on a tunable tunnel barrier are of increasing interest. They suffer less from the variability induced by the stochastic filament formation process and the choice of the tunnel barrier thickness offers the possibility to adapt the memory device current to the given circuit requirements. Heterostructures consisting of a yttria-stabilized zirconia (YSZ) tunnel barrier and a praseodymium calcium manganite (PCMO) layer are employed. Instead of spatially localized filaments, the resistive switching process occurs underneath the whole electrode. By employing a combination of electrical measurements, in operando hard X-ray photoelectron spectroscopy and electron energy loss spectroscopy, it is revealed that an exchange of oxygen ions between PCMO and YSZ causes an electrostatic modulation of the effective height of the YSZ tunnel barrier and is thereby the underlying mechanism for resistive switching in these devices.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Phillips, Monifa
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Meiners, Thorsten
|0 P:(DE-Juel1)162415
|b 2
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 3
700 1 _ |a Skaja, Katharina
|0 0000-0003-0907-5378
|b 4
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 5
700 1 _ |a Parreira, Pedro
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Offi, Francesco
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Borgatti, Francesco
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 9
700 1 _ |a Panaccione, Giancarlo
|0 P:(DE-HGF)0
|b 10
700 1 _ |a MacLaren, Donald A.
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.1002/adfm.201702282
|g p. 1702282 -
|0 PERI:(DE-600)2039420-2
|n 45
|p 1702282 -
|t Advanced functional materials
|v 27
|y 2017
|x 1616-301X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/838401/files/Arndt_et_al-2017-Advanced_Functional_Materials.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/838401/files/Arndt_et_al-2017-Advanced_Functional_Materials.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:838401
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)158055
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)158062
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130620
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131022
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV FUNCT MATER : 2015
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ADV FUNCT MATER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21