000838404 001__ 838404
000838404 005__ 20210129231538.0
000838404 020__ $$a978-3-319-61357-4 (print)
000838404 020__ $$a978-3-319-61358-1 (electronic)
000838404 0247_ $$2doi$$a10.1007/978-3-319-61358-1_6
000838404 037__ $$aFZJ-2017-07016
000838404 041__ $$aEnglish
000838404 1001_ $$0P:(DE-HGF)0$$aBurgeth, Bernhard$$b0$$eCorresponding author
000838404 245__ $$aTowards Processing Fields of General Real-Valued Square Matrices
000838404 260__ $$aCham$$bSpringer International Publishing$$c2017
000838404 29510 $$aModeling, Analysis, and Visualization of Anisotropy
000838404 300__ $$a115 - 144
000838404 3367_ $$2ORCID$$aBOOK_CHAPTER
000838404 3367_ $$07$$2EndNote$$aBook Section
000838404 3367_ $$2DRIVER$$abookPart
000838404 3367_ $$2BibTeX$$aINBOOK
000838404 3367_ $$2DataCite$$aOutput Types/Book chapter
000838404 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1508476019_23799
000838404 4900_ $$aMathematics and Visualization
000838404 520__ $$aIn this paper, a general framework is presented that allows for thefundamental morphological operations such as dilation and erosion for real-valuedsquare matrix fields. Hence, it is also possible to process any field consisting ofa subgroup of general matrices with examples like the general linear, symmetric,skew-symmetric, Hermitian, and orthonormal group. Therefore, from the theoreticalpoint of view it is possible to process any field with entries consisting of theaforementioned groups. Extended examples illustrated the different conversionprocesses and the definition of corresponding pseudo-suprema and pseudo-infima.Furthermore, some possible applications are illustrated.
000838404 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000838404 588__ $$aDataset connected to CrossRef Book Series
000838404 7001_ $$0P:(DE-Juel1)169421$$aKleefeld, Andreas$$b1$$ufzj
000838404 773__ $$a10.1007/978-3-319-61358-1_6
000838404 909CO $$ooai:juser.fz-juelich.de:838404$$pVDB
000838404 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169421$$aForschungszentrum Jülich$$b1$$kFZJ
000838404 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000838404 9141_ $$y2017
000838404 920__ $$lno
000838404 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000838404 980__ $$acontb
000838404 980__ $$aVDB
000838404 980__ $$aI:(DE-Juel1)JSC-20090406
000838404 980__ $$aUNRESTRICTED