Hauptseite > Publikationsdatenbank > Towards Processing Fields of General Real-Valued Square Matrices > print |
001 | 838404 | ||
005 | 20210129231538.0 | ||
020 | _ | _ | |a 978-3-319-61357-4 (print) |
020 | _ | _ | |a 978-3-319-61358-1 (electronic) |
024 | 7 | _ | |a 10.1007/978-3-319-61358-1_6 |2 doi |
037 | _ | _ | |a FZJ-2017-07016 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Burgeth, Bernhard |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Towards Processing Fields of General Real-Valued Square Matrices |
260 | _ | _ | |a Cham |c 2017 |b Springer International Publishing |
295 | 1 | 0 | |a Modeling, Analysis, and Visualization of Anisotropy |
300 | _ | _ | |a 115 - 144 |
336 | 7 | _ | |a BOOK_CHAPTER |2 ORCID |
336 | 7 | _ | |a Book Section |0 7 |2 EndNote |
336 | 7 | _ | |a bookPart |2 DRIVER |
336 | 7 | _ | |a INBOOK |2 BibTeX |
336 | 7 | _ | |a Output Types/Book chapter |2 DataCite |
336 | 7 | _ | |a Contribution to a book |b contb |m contb |0 PUB:(DE-HGF)7 |s 1508476019_23799 |2 PUB:(DE-HGF) |
490 | 0 | _ | |a Mathematics and Visualization |
520 | _ | _ | |a In this paper, a general framework is presented that allows for thefundamental morphological operations such as dilation and erosion for real-valuedsquare matrix fields. Hence, it is also possible to process any field consisting ofa subgroup of general matrices with examples like the general linear, symmetric,skew-symmetric, Hermitian, and orthonormal group. Therefore, from the theoreticalpoint of view it is possible to process any field with entries consisting of theaforementioned groups. Extended examples illustrated the different conversionprocesses and the definition of corresponding pseudo-suprema and pseudo-infima.Furthermore, some possible applications are illustrated. |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef Book Series |
700 | 1 | _ | |a Kleefeld, Andreas |0 P:(DE-Juel1)169421 |b 1 |u fzj |
773 | _ | _ | |a 10.1007/978-3-319-61358-1_6 |
909 | C | O | |o oai:juser.fz-juelich.de:838404 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)169421 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
914 | 1 | _ | |y 2017 |
920 | _ | _ | |l no |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a contb |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|