001     838405
005     20220930130133.0
024 7 _ |a 10.1038/s41598-017-10071-0
|2 doi
024 7 _ |a 2128/15619
|2 Handle
024 7 _ |a pmid:28883643
|2 pmid
024 7 _ |a WOS:000409561800069
|2 WOS
024 7 _ |a altmetric:24895893
|2 altmetric
037 _ _ |a FZJ-2017-07017
041 _ _ |a English
082 _ _ |a 000
100 1 _ |a Amelung, Wulf
|0 P:(DE-Juel1)129427
|b 0
|u fzj
245 _ _ |a Soil organic phosphorus transformations during 2000 years of paddy-rice and non-paddy management in the Yangtze River Delta, China
260 _ _ |a London
|c 2017
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1508229184_27092
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The contents and properties of soil organic phosphorus (Po) largely drive ecosystem productivity with increasing development of natural soil. We hypothesized that soil Po would initially increase with paddy management and then would persist under steady-state conditions. We analyzed soils from a 2000-year chronosequence of a rice-wheat rotation and an adjacent non-paddy 700-year chronosequence in Bay of Hangzhou (China) for their Po composition using solution 31P-NMR after NaOH-EDTA extraction. Land reclamation promoted Po accumulation in both paddy and non-paddy topsoils (depths ≤ 18 cm) until steady-state equilibria were reached within 200 years of land use. Greater Po concentrations were found, however, in the non-paddy subsoils than in those under paddy management. Apparently, the formation of a dense paddy plough pan hindered long-term Po accumulation in the paddy subsoil. The surface soils showed higher proportions of orthophosphate diesters under paddy than under non-paddy management, likely reflecting suppressed decomposition of crop residues despite elevated microbial P compounds stocks under anaerobic paddy-rice management. Intriguingly, the composition of Po was remarkably stable after 194-years of paddy management and 144-years of non-paddy management, suggesting novel steady-state equilibria of P dynamics had been reached in these man-made ecosystems after less than two centuries.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Cade-Menun, Barbara J.
|0 0000-0003-4391-3718
|b 1
700 1 _ |a Bol, Roland
|0 P:(DE-Juel1)145865
|b 2
|u fzj
700 1 _ |a Willbold, Sabine
|0 P:(DE-Juel1)133857
|b 3
|u fzj
700 1 _ |a Cao, Zhihong
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Klumpp, Erwin
|0 P:(DE-Juel1)129484
|b 5
|u fzj
700 1 _ |a Jiang, Xiaoqian
|0 P:(DE-Juel1)156268
|b 6
|e Corresponding author
|u fzj
773 _ _ |a 10.1038/s41598-017-10071-0
|g Vol. 7, no. 1, p. 10818
|0 PERI:(DE-600)2615211-3
|n 1
|p 10818
|t Scientific reports
|v 7
|y 2017
|x 2045-2322
856 4 _ |u https://juser.fz-juelich.de/record/838405/files/s41598-017-10071-0.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838405/files/s41598-017-10071-0.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838405/files/s41598-017-10071-0.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838405/files/s41598-017-10071-0.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838405/files/s41598-017-10071-0.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838405/files/s41598-017-10071-0.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:838405
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129427
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145865
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)133857
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129484
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)156268
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21