Home > Publications database > De novo Assembly of a New Solanum pennellii Accession Using Nanopore Sequencing > print |
001 | 838406 | ||
005 | 20210129231539.0 | ||
024 | 7 | _ | |a 10.1105/tpc.17.00521 |2 doi |
024 | 7 | _ | |a 1040-4651 |2 ISSN |
024 | 7 | _ | |a 1532-298X |2 ISSN |
024 | 7 | _ | |a 2128/15880 |2 Handle |
024 | 7 | _ | |a pmid:29025960 |2 pmid |
024 | 7 | _ | |a WOS:000414861100009 |2 WOS |
024 | 7 | _ | |a altmetric:27379477 |2 altmetric |
037 | _ | _ | |a FZJ-2017-07018 |
041 | _ | _ | |a English |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Schmidt, Maximilian HW |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a De novo Assembly of a New Solanum pennellii Accession Using Nanopore Sequencing |
260 | _ | _ | |a Rockville, Md. |c 2017 |b Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1510660140_16393 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Updates in nanopore technology have made it possible to obtain gigabases of sequence data. Prior to this, nanopore sequencing technology was mainly used to analyze microbial samples. Here, we describe the generation of a comprehensive nanopore sequencing data set with a median read length of 11,979 bp for a self-compatible accession of the wild tomato species Solanum pennellii. We describe the assembly of its genome to a contig N50 of 2.5 MB. The assembly pipeline comprised initial read correction with Canu and assembly with SMARTdenovo. The resulting raw nanopore-based de novo genome is structurally highly similar to that of the reference S. pennellii LA716 accession but has a high error rate and was rich in homopolymer deletions. After polishing the assembly with Illumina reads, we obtained an error rate of <0.02% when assessed versus the same Illumina data. We obtained a gene completeness of 96.53%, slightly surpassing that of the reference S. pennellii. Taken together, our data indicate that such long read sequencing data can be used to affordably sequence and assemble gigabase-sized plant genomes. |
536 | _ | _ | |a 582 - Plant Science (POF3-582) |0 G:(DE-HGF)POF3-582 |c POF3-582 |f POF III |x 0 |
536 | _ | _ | |a 583 - Innovative Synergisms (POF3-583) |0 G:(DE-HGF)POF3-583 |c POF3-583 |f POF III |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Vogel, Alexander |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Denton, Alisandra K |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Istace, Benjamin |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Wormit, Alexandra |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a van de Geest, Henri |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Bolger, Marie |0 P:(DE-Juel1)162335 |b 6 |u fzj |
700 | 1 | _ | |a Alseekh, Saleh |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Maß, Janina |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Pfaff, Christian |0 P:(DE-Juel1)164481 |b 9 |u fzj |
700 | 1 | _ | |a Schurr, Ulrich |0 P:(DE-Juel1)129402 |b 10 |u fzj |
700 | 1 | _ | |a Chetelat, Roger T. |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Maumus, Florian |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Aury, Jean-Marc |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Koren, Sergey |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Fernie, Alisdair R. |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a Zamir, Daniel |0 P:(DE-HGF)0 |b 16 |
700 | 1 | _ | |a Bolger, Anthony |0 P:(DE-HGF)0 |b 17 |
700 | 1 | _ | |a Usadel, Björn |0 P:(DE-Juel1)145719 |b 18 |e Corresponding author |
773 | _ | _ | |a 10.1105/tpc.17.00521 |g p. tpc.00521.2017 - |0 PERI:(DE-600)2004373-9 |n 10 |p 2336-2348 |t The plant cell |v 29 |y 2017 |x 1040-4651 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/838406/files/2336.full.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/838406/files/2336.full.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/838406/files/2336.full.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/838406/files/2336.full.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/838406/files/2336.full.jpg?subformat=icon-640 |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/838406/files/2336.full.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:838406 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)162335 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)164481 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)129402 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 18 |6 P:(DE-Juel1)145719 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Key Technologies for the Bioeconomy |1 G:(DE-HGF)POF3-580 |0 G:(DE-HGF)POF3-582 |2 G:(DE-HGF)POF3-500 |v Plant Science |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Key Technologies for the Bioeconomy |1 G:(DE-HGF)POF3-580 |0 G:(DE-HGF)POF3-583 |2 G:(DE-HGF)POF3-500 |v Innovative Synergisms |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PLANT CELL : 2015 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b PLANT CELL : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-2-20101118 |k IBG-2 |l Pflanzenwissenschaften |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBG-2-20101118 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|