000838432 001__ 838432
000838432 005__ 20240711101504.0
000838432 0247_ $$2doi$$a10.1016/j.apenergy.2018.02.115
000838432 0247_ $$2ISSN$$a0306-2619
000838432 0247_ $$2ISSN$$a1872-9118
000838432 0247_ $$2WOS$$aWOS:000430030400010
000838432 037__ $$aFZJ-2017-07041
000838432 041__ $$aEnglish
000838432 082__ $$a620
000838432 1001_ $$0P:(DE-Juel1)166197$$aFrank, Matthias$$b0$$eCorresponding author
000838432 245__ $$aBypassing Renewable Variability with a Reversible Solid Oxide Cell Plant
000838432 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000838432 3367_ $$2DRIVER$$aarticle
000838432 3367_ $$2DataCite$$aOutput Types/Journal article
000838432 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1524549731_25915
000838432 3367_ $$2BibTeX$$aARTICLE
000838432 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838432 3367_ $$00$$2EndNote$$aJournal Article
000838432 520__ $$aThe primary problem renewable energy systems must overcome is that electricity cannot always be produced in accordance with demand. This is a major drawback compared to the on-demand power production capability that fossil fuels offer. New technologies can only compete, if a constant power supply is permanently guaranteed. This constitutes a critical benchmark that renewable energy technologies must meet, if they are to replace fossil fuels. Reversible solid oxide cells (rSOCs) represent a promising approach to counteracting this issue. Here we show our developed rSOC plant which incorporates both the storage via electrolysis mode and the electricity production in the reverse, fuel cell mode. In order to achieve a high level of efficiency, the plant has been investigated and optimized with respect to internal waste heat recovery and compression. The final plant design shows an efficiency of up to 67.1% in fuel cell- and 76% in electrolysis mode and therefore a round trip efficiency of 51%.
000838432 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000838432 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000838432 588__ $$aDataset connected to CrossRef
000838432 7001_ $$0P:(DE-Juel1)129838$$aDeja, Robert$$b1
000838432 7001_ $$0P:(DE-Juel1)129901$$aPeters, Roland$$b2
000838432 7001_ $$0P:(DE-Juel1)129828$$aBlum, Ludger$$b3
000838432 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b4
000838432 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2018.02.115$$gVol. 217, p. 101 - 112$$p101 - 112$$tApplied energy$$v217$$x0306-2619$$y2018
000838432 8564_ $$uhttps://juser.fz-juelich.de/record/838432/files/1-s2.0-S0306261918302460-main.pdf$$yRestricted
000838432 8564_ $$uhttps://juser.fz-juelich.de/record/838432/files/1-s2.0-S0306261918302460-main.gif?subformat=icon$$xicon$$yRestricted
000838432 8564_ $$uhttps://juser.fz-juelich.de/record/838432/files/1-s2.0-S0306261918302460-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838432 8564_ $$uhttps://juser.fz-juelich.de/record/838432/files/1-s2.0-S0306261918302460-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838432 8564_ $$uhttps://juser.fz-juelich.de/record/838432/files/1-s2.0-S0306261918302460-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838432 8564_ $$uhttps://juser.fz-juelich.de/record/838432/files/1-s2.0-S0306261918302460-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838432 909CO $$ooai:juser.fz-juelich.de:838432$$pVDB
000838432 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166197$$aForschungszentrum Jülich$$b0$$kFZJ
000838432 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129838$$aForschungszentrum Jülich$$b1$$kFZJ
000838432 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129901$$aForschungszentrum Jülich$$b2$$kFZJ
000838432 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129828$$aForschungszentrum Jülich$$b3$$kFZJ
000838432 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b4$$kFZJ
000838432 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000838432 9141_ $$y2018
000838432 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2015
000838432 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838432 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838432 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838432 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000838432 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000838432 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838432 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838432 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838432 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838432 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000838432 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2015
000838432 920__ $$lyes
000838432 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000838432 980__ $$ajournal
000838432 980__ $$aVDB
000838432 980__ $$aI:(DE-Juel1)IEK-3-20101013
000838432 980__ $$aUNRESTRICTED
000838432 981__ $$aI:(DE-Juel1)ICE-2-20101013