001     838432
005     20240711101504.0
024 7 _ |a 10.1016/j.apenergy.2018.02.115
|2 doi
024 7 _ |a 0306-2619
|2 ISSN
024 7 _ |a 1872-9118
|2 ISSN
024 7 _ |a WOS:000430030400010
|2 WOS
037 _ _ |a FZJ-2017-07041
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Frank, Matthias
|0 P:(DE-Juel1)166197
|b 0
|e Corresponding author
245 _ _ |a Bypassing Renewable Variability with a Reversible Solid Oxide Cell Plant
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1524549731_25915
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The primary problem renewable energy systems must overcome is that electricity cannot always be produced in accordance with demand. This is a major drawback compared to the on-demand power production capability that fossil fuels offer. New technologies can only compete, if a constant power supply is permanently guaranteed. This constitutes a critical benchmark that renewable energy technologies must meet, if they are to replace fossil fuels. Reversible solid oxide cells (rSOCs) represent a promising approach to counteracting this issue. Here we show our developed rSOC plant which incorporates both the storage via electrolysis mode and the electricity production in the reverse, fuel cell mode. In order to achieve a high level of efficiency, the plant has been investigated and optimized with respect to internal waste heat recovery and compression. The final plant design shows an efficiency of up to 67.1% in fuel cell- and 76% in electrolysis mode and therefore a round trip efficiency of 51%.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Deja, Robert
|0 P:(DE-Juel1)129838
|b 1
700 1 _ |a Peters, Roland
|0 P:(DE-Juel1)129901
|b 2
700 1 _ |a Blum, Ludger
|0 P:(DE-Juel1)129828
|b 3
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 4
773 _ _ |a 10.1016/j.apenergy.2018.02.115
|g Vol. 217, p. 101 - 112
|0 PERI:(DE-600)2000772-3
|p 101 - 112
|t Applied energy
|v 217
|y 2018
|x 0306-2619
856 4 _ |u https://juser.fz-juelich.de/record/838432/files/1-s2.0-S0306261918302460-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838432/files/1-s2.0-S0306261918302460-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838432/files/1-s2.0-S0306261918302460-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838432/files/1-s2.0-S0306261918302460-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838432/files/1-s2.0-S0306261918302460-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838432/files/1-s2.0-S0306261918302460-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:838432
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166197
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129838
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129901
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129828
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL ENERG : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b APPL ENERG : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21